Cho a,b,c,d là các số thực thỏa mãn \(a^2+b^2=2,c^2+d^2+25=6c+8d\). Tìm GTLN của P=3c+4d-(ac+bd)
Cho a,b,c,d là các số thực thay đổi thỏa mãn \(a^2+b^2=2\) và \(c^2+d^2+25=6c+8d\). Tìm giá trị lớn nhất của P = 3c + 4d - ( ac + bd )
\(c^2+d^2+25=6c+8d\)
\(\Leftrightarrow\left(c^2-6c+9\right)+\left(d^2-8d+16\right)=0\)
\(\Leftrightarrow\left(c-3\right)^2+\left(d-4\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}c-3=0\\d-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}c=3\\d=4\end{matrix}\right.\)
\(\Rightarrow P=25-3a-4b=25-\left(3a+4b\right)=25-Q\)
Xét \(Q=3a+4b\Rightarrow Q^2=\left(3a+4b\right)^2\le\left(3^2+4^2\right)\left(a^2+b^2\right)=25.2=50\)
\(\Rightarrow Q^2\le50\Rightarrow-5\sqrt{2}\le Q\le5\sqrt{2}\Rightarrow-Q\le5\sqrt{2}\)
\(\Rightarrow P\le25+5\sqrt{2}\)
\(P_{max}=25+5\sqrt{2}\) khi \(\left\{{}\begin{matrix}a^2+b^2=2\\\frac{a}{3}=\frac{b}{4}\\3a+4b=-5\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3\sqrt{2}}{5}\\b=-\frac{4\sqrt{2}}{5}\end{matrix}\right.\)
cho a, b, c, d là các số thực thay đổi thỏa mãn \(a^2+b^2=2,c^2+d^2+25=6c+8d\)
tìm giá trị lớn nhất của \(P=3c+4d-\left(ac+bd\right)\)
\(c^2-6c+9+d^2-8d+16=0\Leftrightarrow\left(c-3\right)^2+\left(d-4\right)^2=0\Rightarrow\left\{{}\begin{matrix}c=3\\d=4\end{matrix}\right.\)
\(\Rightarrow P=25-\left(3a+4b\right)\)
Mặt khác \(\left(3a+4b\right)^2\le\left(3^2+4^2\right)\left(a^2+b^2\right)=50\)
\(\Rightarrow-5\sqrt{2}\le3a+4b\le5\sqrt{2}\)
\(\Rightarrow P\le25+5\sqrt{2}\)
\(\Rightarrow P_{max}=25+5\sqrt{2}\) khi \(\left\{{}\begin{matrix}a=\frac{-3\sqrt{2}}{5}\\b=\frac{-4\sqrt{2}}{5}\end{matrix}\right.\)
Cho các số thực \(a,b,c,d\) thỏa mãn \(a^2+b^2=25;c^2+d^2=16;ac+bd\ge20.\)Tìm Max:
\(a+d\)
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d
Cho các số thực a, b, c, d thỏa mãn ( 2x – 1)4 = ( ax + b)4 + ( x2 + cx + d)2 với mọi giá trị của x là số thực. Tìm giá trị của biểu thức P = a + 2b + 3c + 4d.
tìm các số a,b,c,d khác o thỏa mãn b^2=ac;c^2=bd;a=8d;a+b+c+d=15
Tìm GTLN của T= 2ac+bd+cd trong đó a,b,c,d là các số thực thỏa mãn:
4a2+b2=2 và c+d=4
Cho 4 số nguyên ko âm a,b,c,d thỏa mãn \(a^2+2b^2+3c^2+4d^2=36,2a^2+b^2-2d^2=6\). Tìm GTNN của \(Q=a^2+b^2+c^2+d^2\)
từ hệ điều kiện, bằng cách cộng theo vế ta được: pmin=14 đạt được khi (2) ta nhận được 0≤b≤2⇔[b=0b=2Khi đó:-Với (2) có dạng a thỏa mãn.-Với {a^2+3c^2=28, 2a^2=2 mà ⇒{a=1c=3Vậy a=1,b=2,c=3,d=0
Từ giả thiết suy ra \(3\left(a^2+b^2+c^2+d^2\right)-d^2=42\)
\(\Leftrightarrow3Q-d^2=42\)
\(\Rightarrow Q=\dfrac{42+d^2}{3}\ge\dfrac{42}{3}=14\)
\(\Rightarrow minQ=14\Leftrightarrow\left\{{}\begin{matrix}d=0\\a^2+2b^2+3c^2=36\left(1\right)\\2a^2+b^2=6\left(2\right)\end{matrix}\right.\)
Từ \(\left(2\right)\Rightarrow b^2⋮2\Rightarrow b⋮2\)
Vì \(b^2=6-2a^2\le6\Rightarrow0\le b\le\sqrt{6}\Rightarrow b\in\left\{0;2\right\}\)
TH1: \(b=0\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=36\\2a^2=6\end{matrix}\right.\Rightarrow a=\sqrt{3}\left(l\right)\)
TH2: \(b=2\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=28\\2a^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=1\end{matrix}\right.\)
Vậy \(minQ=14\Leftrightarrow\left(a;b;c;d\right)=\left(1;2;3;0\right)\)
Cho a,b,c,d là các số thực thỏa mãn a≥b≥c≥d>0 với a+b+c+d=1
CMR (a+2b+3c+4d)aabbccdd <1