GIẢI CÁC PT SAU:
\(\left(x^2+5x\right)^2+2x^2+10x-24=0\)
\(\left(x^2-4x+1\right)^2+2x^2-8x-1=0\)
Giải các phương trình sau:
a) \(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
b) \(2x^4-5x^3-9x^2+11x+4=0\)
c) \(8x^3+4x^2+2x-3=0\)
d) \(\frac{10x^4}{\left(1+x^2\right)^2}-\frac{3x^2}{1+x^2}-1=0\)
e) \(3x^4+4x^3-27x^2+8x+12=0\)
làm tạm câu này vậy
a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)
\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)
\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)
\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)
\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)
\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)
Vậy...
i cum back <(") câu e/ bạn xét x=0 không là nghiệm của pt, sau đó chia 2 vế cho \(x^2\), đặt ẩn phụ \(t=x+\frac{1}{x}\)rồi giải
Giải các phương trình,bất phương trình:
c,\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
d,\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
e,\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
g,\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
h,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
i,\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
k,\(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
l,\(\left(x^2-2x+1\right)-4=0\)
m,\(4x^2+4x++1=x^2\)
Xin đáy ai giúp mình đi
Giải PT
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(x^4-8x^2+x+12=0\)
\(x^4+5x^3-10x^2+10x+4=0\)
\(\left(6x^2-5x+1\right)\left(x^2-5x+6\right)=4x^2\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
giải các pt
\(a,\frac{2x-13}{2x-16}+\frac{2\left(x-6\right)}{x-8}=\frac{7}{8}+\frac{2\left(5x-39\right)}{3x-24}\)
\(b,x\left(x-2\right)\left(x-1\right)\left(x+1\right)=24\)
\(c,x^4+2x^3+5x^2+4x-12=0\)
câu a tự quy đồng cùng mẫu rồi làm thôi :"))
b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)
Đặt \(x^2-x=k\), ta có:
\(k.\left(k-2\right)=24\)
\(\Leftrightarrow k^2-2k+1=25\)
\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)
\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)
c)\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)
\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)
p/s: bn tự kết luận nha :))
Giải phương trình:
a) \(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
b) \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
Giải các phương trình lượng giác sau:
1) a/ \(cos\left(10x+12\right)+4\sqrt{2}sin\left(5x+6\right)-4=0\)
b/ \(cos\left(4x+2\right)+3sin\left(2x+1\right)=2\)
2) a/ \(cos2x+sin^2x+2cosx+1=0\)
b/ \(4sin^22x-8cos^2x+ 3=0\)
c/ \(4cos2x+4sin^2x+4sinx=1\)
3) a/ \(tanx+cotx=2\)
b/ \(2tanx-2cotx=3\)
4) a/ \(2sin2x+8tanx=9\sqrt{3}\)
b/ \(2cos2x+tan^2x=5\)
5) a/ \(\left(3+cotx\right)^2=5\left(3+cotx\right)\)
b/ \(4\left(sin^2x+\dfrac{1}{sin^2x}\right)-4\left(sinx+\dfrac{1}{sinx}\right)=7\)
1a.
Đặt \(5x+6=u\)
\(cos2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)
\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)
1b.
Đặt \(2x+1=u\)
\(cos2u+3sinu=2\)
\(\Leftrightarrow1-2sin^2u+3sinu=2\)
\(\Leftrightarrow2sin^2u-3sinu+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)
2a.
\(cos^2x-sin^2x+sin^2x+2cosx+1=0\)
\(\Leftrightarrow cos^2x+2cosx+1=0\)
\(\Leftrightarrow\left(cosx+1\right)^2=0\)
\(\Leftrightarrow cosx=-1\)
\(\Leftrightarrow x=\pi+k2\pi\)
giải các pt :\(\)
1)\(-2x^2+5x-2=0\)
2)\(3x^2-8x-3=0\)
3)\(4x^2+4x+1=0\)
4)\(3x^2+5x=x^2+7x-2\)
5)\(\left(x+3\right)^2+1=\frac{\left(3x-1\right)^2}{2}+\frac{x\left(2x-3\right)}{2}\)
giải dùm mình mấy pt này vs !! mình chưa hc mấy pt bậc này mà thầy cho bt về nhà !! các bạn giúp mình vs !!!!
1/ \(x^3-3x^2+2=0\)
2/ \(2x^4-5x^3+6x^2-5x+2=0\)
3/ \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
4/ \(\left(x+1\right)^4+\left(x+3\right)^4=2\)
5/ \(x^5-5x^4+8x^3+8x^2-5x+1=0\)
2) pt đề bài cho=0
<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0
<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)
Từ 1 => x=1
từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)
=\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x
Nên pt 2 cô nghiệm
Vậy pt đề cho có nghiệm là 1
1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)
3/ x(x + 3)(x + 1)(x + 2) = 24
=> (x2 + 3x)(x2 + 3x + 2) = 24
Đặt a = x2 + 3x ta được pt: a(a + 2) = 24 => a2 + 2a - 24 = 0 => a = 4 hoặc a = -6
Với a = 4 => x2 + 3x = 4 => x2 + 3x - 4 = 0 => x = 1 hoặc a = -4Với a = -6 => x2 + 3x = -6 => x2 + 3x + 6 = 0 , mà x2 + 3x + 6 > 0 => vô nghiệmVậy x = 1 , x = -4
4/ (x + 1)4 + (x + 3)4 = 2
Đặt a = x + 2 ta được: (a - 1)4 + (a + 1)4 = 2
\(\Rightarrow\left[\left(a-1\right)^2+\left(a+1\right)^2\right]^2-2\left(a-1\right)^2\left(a+1\right)^2=2\)
\(\Rightarrow\left[\left(a-1+a+1\right)^2-2\left(a-1\right)\left(a+1\right)\right]^2-2\left(a^2-1\right)^2=0\)
\(\Rightarrow\left[\left(2a\right)^2-2\left(a^2-1\right)\right]^2-2\left(a^2-1\right)^2=0\)
\(\Rightarrow\left[4a^2-2\left(a^2-1\right)+\sqrt{2}\left(a^2-1\right)\right]\left[4a^2-2\left(a^2-1\right)-\sqrt{2}\left(a^2-1\right)\right]=0\)
\(\Rightarrow\left[\left(2+\sqrt{2}\right)a^2+2-\sqrt{2}\right]\left[\left(2-\sqrt{2}\right)a^2+2+\sqrt{2}\right]=0\)
Tới đây bạn giải ra a rồi tính ra x nha
Giải PT sau:
1)\(\left(2x+7\right)^2=9\left(x+2\right)^2\)
2)\(\left(x^2-16\right)^2-\left(x-4\right)^2=0\)
3)\(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)