Cho tam giác ABC có góc A=80 độ,góc B - góc C=29 độ.So sánh các cạnh tam giác ABC
cho tam giác ABC có góc A-góc B+góc C=90 độ và góc A-góc C=-5 độ.So sánh các cạnh trong tam giác
Đặt \(\widehat{A}=a;\widehat{B}=b;\widehat{C}=c\)
Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>a+b+c=180(1)
\(\widehat{A}-\widehat{B}+\widehat{C}=90^0\)
=>a-b+c=90(2)
\(\widehat{A}-\widehat{C}=-5^0\)
=>\(\widehat{C}-\widehat{A}=5^0\)
=>c-a=5(3)
Từ (1),(2),(3) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b+c=180\\a-b+c=90\\c-a=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+c+b=180\\a+c-b=90\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+c=\dfrac{180+90}{2}=\dfrac{270}{2}=135\\b=\dfrac{180-90}{2}=\dfrac{90}{2}=45\\c-a=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=45\\c+a=135\\c-a=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=45\\c=\dfrac{135+5}{2}=\dfrac{140}{2}=70\\a=c-5=70-5=65\end{matrix}\right.\)
Vậy: \(\widehat{A}=65^0;\widehat{B}=45^0;\widehat{B}=70^0\)
Xét ΔABC có \(\widehat{B}< \widehat{A}< \widehat{C}\)
mà AC,BC,AB lần lượt là cạnh đối diện của các góc ABC;BAC;ACB
nên AC<BC<AB
bài 2:cho tam giác ABC có A+B-2C=27 độ và A+3C=273 độ.So sánh các cạnh trong tam giác ABC
bài 3:cho tam giác ABC có C-3B-2A=-3 độ và 5B-2A=16 độ. Tính các góc từ đó so sánh các cạnh trong tam giác ABC
cho tam giác ABC vuông ở A,có góc B=50 độ.So sánh các cạnh của tam giác ABC
góc C=90-50=40độ
Vì góc A>góc B>góc C
nên BC>AC>AB
Tam giác ABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
Xét tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-50^o-90^o=40^o\)
Vậy \(\widehat{A}>\widehat{B}>\widehat{C}\)
\(\Rightarrow\text{BC>AC>AB}\)
Vì \(\widehat{A}\) là góc vuông, \(\widehat{B}=50^0\)
`->` \(\widehat{C}=40^0\)
`->` \(\widehat{A}>\widehat{B}>\widehat{C}\)
`->`\(BC>AC>AB\)
Cho tam giác ABC có góc A = 70 độ, góc B = 50 độ.
So sánh các cạnh của tam giác ABC:
A. AC >BC>AB B. AC>AB>BC C. BC>AB>AC D. AB>AC>BC
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(70^0+50^0\right)=180^0-120^0=60^0\)
\(\widehat{A}>\widehat{C}>\widehat{B}\left(70^0>60^0>50^0\right)\)
\(=>BC>AB>AC\)
=> Chọn C
Cho tam giác ABC có góc A=80 độ,góc B - góc C =20 độ .So sánh các cạnh tam giác ABC
Ta có góc A =80° , ➙ góc B + góc C = 180° - góc A = 100°
mà góc B - góc C = 20° ➙ góc B > góc C => AC > AB ( quan hệ giữa góc và cạnh đối diện )
.... bạn tự làm tiếp phần sau rễ rồi .....
Cho tam gilác ABC vuông tại A có góc B>45 độ.So sánh các cạnh của tam giác ABC
ta có:
góc A=90 độ; góc B>45 độ
=>góc B>C
=> A>B>C
=>BC>AC>AB
Cho tam gilác ABC vuông tại A có góc B>45 độ.So sánh các cạnh của tam giác ABC
Cho tam giác ABC có góc A=90 độ,góc B=54 độ.Trên cạnh AC lấy điểm D sao cho góc DBC=18 độ.So sánh BD và AC.
https://hoc24.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+g%C3%B3c+A=90+%C4%91%E1%BB%99,g%C3%B3c+B=54+%C4%91%E1%BB%99.Tr%C3%AAn+c%E1%BA%A1nh+AC+l%E1%BA%A5y+%C4%91i%E1%BB%83m+D+sao+cho+g%C3%B3c+DBC=18+%C4%91%E1%BB%99.So+s%C3%A1nh+BD+v%C3%A0+AC.++Gi%C3%BAp+mik+vs+%C4%91ang+c%E1%BA%A7n+g%E1%BA%A5p!!!&id=171276
cho tam giác abc có góc a bằng 60 độ b bằng 80 độ .vẽ tia phân giác AD của góc A (AD cắt BC tại D) a) tính góc ADB b)so sánh các cạnh của tam giác ABD c)so sánh các cạnh của tam giác ADC
a: góc C=180-60-80=40 độ
góc BAD=góc CAD=60/2=30 độ
góc ADB=180-80-30=70 độ
b: vì góc BAD<góc ADB<góc ABD
nên BD<AB<AD
c: góc ADC=180-70=110 độ
Vì góc ADC>góc C>góc DAC
nên AC>AD>CD
a) Góc C = 180 - 60 - 80 = 400
Góc BAD = góc CAD = \(\dfrac{60}{2}\) = 300
Góc ADB = 180 - 80 - 30 = 700
b) Vì góc BAD < góc ADB < góc ABD
nên BD < AB < AD
c) Góc ADC = 180 - 70 = 1100
Vì góc ADC > góc C > góc DAC
nên AC > AD > CD