.
tính
D=\(\left(-1\right)^n\left(-1\right)^{2n+1}\left(-1\right)^{n+1}\) (n la so tu nhien)
cho so tu nhien n \(\ge\) 1.chung minh rang :
\(2^n.n!\le\left(n+1\right)^n\le\left(2n\right)^n\)
CMR hang dang thuc thuc nao sau voi n la so tu nhien :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\left(n\ge2\right)\)
Không thể quy đồng mẫu số các phân số ở VT . Cần tách mỗi phân số thành hiệu 2 phân số . Nhận xét :
Do đó : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}\)
=> Bài toán đã được cm
Chứng minh rằng số: P=\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n+1}\left(n\varepsilon N\right)\) khong la so tu nhien
tính \(D=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)...\left(1-\frac{1}{\left(2n-1\right)^2}\right)\)n thuộc N, n>1
Tính \(D=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)...\left(1-\frac{1}{\left(2n-1\right)^2}\right)\)với n thuộc N, n>1
Chứng minh rằng với mọi n thuộc Z thì :
a) \(\left(n^2+3n-1\right).\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
c) \(\left(2n-1\right).3-\left(2n-1\right)⋮8\)
d) \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
a/ Bạn coi lại đề bài, 3n^2 +n^2 thì bằng 4n^2 luôn chứ ko ai cho đề bài như vậy cả
b/ \(\lim\limits\dfrac{\dfrac{n^3}{n^3}+\dfrac{3n}{n^3}+\dfrac{1}{n^3}}{-\dfrac{n^3}{n^3}+\dfrac{2n}{n^3}}=-1\)
c/ \(=\lim\limits\dfrac{-\dfrac{2n^3}{n^2}+\dfrac{3n}{n^2}+\dfrac{1}{n^2}}{-\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}=\lim\limits\dfrac{-2n}{-1}=+\infty\)
d/ \(=\lim\limits\left[n\left(1+1\right)\right]=+\infty\)
e/ \(\lim\limits\left[2^n\left(\dfrac{2n}{2^n}-3+\dfrac{1}{2^n}\right)\right]=\lim\limits\left(-3.2^n\right)=-\infty\)
f/ \(=\lim\limits\dfrac{4n^2-n-4n^2}{\sqrt{4n^2-n}+2n}=\lim\limits\dfrac{-\dfrac{n}{n}}{\sqrt{\dfrac{4n^2}{n^2}-\dfrac{n}{n^2}}+\dfrac{2n}{n}}=-\dfrac{1}{2+2}=-\dfrac{1}{4}\)
g/ \(=\lim\limits\dfrac{n^2+3n-1-n^2}{\sqrt{n^2+3n-1}+n}+\lim\limits\dfrac{n^3-n^3+n}{\sqrt[3]{\left(n^3-n\right)^2}+n.\sqrt[3]{n^3-n}+n^2}\)
\(=\lim\limits\dfrac{\dfrac{3n}{n}-\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{3n}{n^2}-\dfrac{1}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{n}{n^2}}{\dfrac{\sqrt[3]{\left(n^3-n\right)^2}}{n^2}+\dfrac{n\sqrt[3]{n^3-n}}{n^2}+\dfrac{n^2}{n^2}}\)
\(=\dfrac{3}{2}+0=\dfrac{3}{2}\)
a) lim \(\left(-3n^3+n^2-1\right)\)
minh le oi ban dao mau so cua ban len cho tu uong roi thay vi tri cua mau thanh n3 +2n
Cho:
\(A=\dfrac{1}{1.\left(2n-1\right)}+\dfrac{1}{3.\left(2n-3\right)}+...+\dfrac{1}{\left(2n-3\right).3}+\dfrac{1}{\left(2n-1\right).1}\) \(B=1+\dfrac{1}{3}+...+\dfrac{1}{2n-1}\) (với n ∈ N*).
Tính \(\dfrac{A}{B}\)