cho x^2-4x+1=0.Tính T=(x+1/x)^2+(X^2+1/X^2)^2+(X^3+1/X^3)^2
1. Tính:
a) ( 3x+1) (3x-1) ; ( x+5y) (x-5y)
b) ( x-3) (x^2+3x+9) ; (x-5) (x^2+5x+25)
2. Rút gọn biểu thức:
a) (x+1) ^2 - (x-1)^2-3 (x+1) (x-1)
b) 5(x+2) (x-2) - (2x-3) ^2-x^2+17
c) (x-1) ^3-(x-1)(x^2+x+1)
d) (x-3) ^3-(x-3)(x^2+3x+9) +6(x+1) ^2
3. Tìm x:
a) (x+4) ^2-(x+1)(x-1) =16
b) (2x-1) ^2+(x+3) ^2-5(x+7) (x-7) = 0
c) (x-2) ^3-(x-4)(x^2+4x+16) +6(x+1) ^2=49
d) (x+2)(x^2-2x+4) -x(x^2+2) =15
1
a) \(\left(3x+1\right)\left(3x-1\right)=9x^2-1\)
\(\left(x+5y\right)\left(x-5y\right)=x^2-25y\)
b) \(\left(x-3\right)\left(x^2+3x+9\right)=x^3-27\)
\(\left(x-5\right)\left(x^2+5x+25\right)=x^3-125\)
Bài 3:
a: \(\Leftrightarrow x^2+8x+16-x^2+1=16\)
=>8x+1=0
=>x=-1/8
b: \(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
=>2x+255=0
=>x=-255/2
c: \(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6x^2+12x+6=49\)
=>24x+62=49
=>24x=-13
=>x=-13/24
d: =>x^3+8-x^3-2x=15
=>-2x=15-8=7
=>x=-7/2
Tìm x biết : 6(x+2)(x-3)-3(x-2)^2-3(x-1)(x+1)=1
3(x+2)^2+(2x-1)^2-7(x+3)(x-3)=36
(x-1)(x^2+x+1)+x(x+2)(2-x)=5
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
Tìm x biết : 6(x+2)(x-3)-3(x-2)^2-3(x-1)(x+1)=1
3(x+2)^2+(2x-1)^2-7(x+3)(x-3)=36
(x-1)(x^2+x+1)+x(x+2)(2-x)=5
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
Cho x2-4x+1=0. Tính T=
\(\left(x+\dfrac{1}{x}\right)^2+\left(x^2+\dfrac{1}{x^2}\right)^2+\left(x^3+\dfrac{1}{x^3}\right)^2\)
gt : \(x^2-4x+1=0\Leftrightarrow x^2+1=4x\)(1)
\(\Leftrightarrow\left(x^2+1\right)^2=16x^2\Leftrightarrow x^4+2x^2+1=16x^2\Rightarrow x^4+1=14x^2\)(2)
\(\Leftrightarrow\left(x^2+1\right)^3=64x^3\Leftrightarrow x^6+3x^4+3x^2+1=64x^3\)
\(\Leftrightarrow x^6+3x^2\left(x^2+1\right)+1=64x^3\Leftrightarrow x^6+12x^3+1=64x^3\)
\(\Rightarrow x^6+1=52x^3\)(3)
Thay (1);(2);(3) vào T ta dược :
\(T=\left(\frac{x^2+1}{x}\right)^2+\left(\frac{x^4+1}{x^2}\right)^2+\left(\frac{x^6+1}{x^3}\right)^2\)
\(=\left(\frac{4x}{x}\right)^2+\left(\frac{14x^2}{x^2}\right)^2+\left(\frac{52x^3}{x^3}\right)^2=4^2+14^2+52^2=2916\)
Bài 4:Tìm x, biết:
1/ (x-1)(x^2+x+1)-x^3-6x=11
2/ 16x^2-(3x-4)^2=0
3/ x^3-x^2+3-3x=0
4/ x-1/x+2=x+2/x+1
5/1/x+2/x+1=0
6/ 9-x^2/x : (x-3)=1
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
1) Rút gọn biểu thức
a) ( x-3)(x+7)-(x+5)(x-1)
b) (x+8)^2 - 2(x+8)(x-2) + (x-2)^2
c) (x+1)(x^2-x+1)-(x-1)(x^2+x+1)
2) Chứng minh biểu thức sau không phụ thục vào biến
a) ( x+1)^3 - (x-1)(x^2+x+1)-3(1-x).x
b) (x+2)^3 + (x-2)^3 - 2x(x^2+12)
3) Tính giá trị của biểu thức bằng cách nhanh nhất ( Tính nhẩm)
a) ( x+1)(x-1)(x^2+x+1)(x^2-x+1) với x=3
b) x^3+9x^2+27x+27 với x = -103
c) 9x^2 + 42x + 49 với x= 1
1) \(a,\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=x^2+4x-21-x^2-4x+5=-16\)
\(b,\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2=\left(x+8-x+2\right)^2=\left(10\right)^2=100\)
c, \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3+1-x^3+1=2\)
a, \(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=\left(x+1\right)^3-\left(x-1\right)^3-3x\left(x+1\right)+3\left(x+1\right)x=\left(x+1\right)^3-\left(x-1\right)^3=2\left(\right)\)
hình như sai r thui ko làm nữa
1.
a,\(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)\)
\(=(x^2+7x-3x-21)-\left(x^2-x+5x-5\right)\)
\(=x^2+7x-3x-21-x^2+x-5x+5\)
\(=-16\)
b,\(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)
\(=\left(x+8-x+2\right)^2\)
\(=10^2=100\)
c,\(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
2.
a,\(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
\(=(x^3+3x^2+3x+1)-\left(x^3-1\right)-3x\left(1-x\right)\)
\(=x^3+3x^2+3x+1-x^3+1-3x+3x^2\)
\(=6x^2+2\)
(Bạn xem lại đề câu này nhé,hoặc là mình làm sai)
b,\(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=\left(x^3+6x^2+12x+8+x^3-6x^2+12x-8\right)-2x^3-24x\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
\(=x^3+x^3-2x^3+6x^2-6x^2+12x+12x-24x+8-8\)
\(=0\)
Vậy giá trị của biểu thức trên không phụ thuộc bởi x
(Câu này cũng không chắc lắm,bạn cũng xem lại xem mình đúng chưa nhé!!!)
\(\)
\(\)
Tìm x,biêt
a,(3/2-2.x):2/3+5/6=1
b.(2.x)-(2.x-5/2)-|-2|=x-1/4
c,2.(x-1/3)-1/3.x=-1/4_x
d,2.(x-1/3)-1/3.x=-1/4_x
e,3/2:\|-1|3.x+1/3|\=|5/6-2|
a: =>(3/2-2x):2/3=1/6
=>3/2-2x=1/6x2/3=2/18=1/9
=>2x=25/18
hay x=25/36
b: \(\Leftrightarrow2x-2x+\dfrac{5}{2}-2=x-\dfrac{1}{4}\)
=>x-1/4=1/2
=>x=3/4
c: \(\Leftrightarrow2x-\dfrac{2}{3}-\dfrac{1}{3}x+\dfrac{1}{4}x=0\)
=>23/12x=2/3
=>x=8/23
Thực hiện phép tính:
a. ( x-2)^3- x(x+1)(x-1)+ 6x(x-3)
b.(x-2)(x^2-2x+4)(x+2)(x^2+2x+4)
Tìm x biết:
a.(x-3)(x^2+ 3x+9)+ x(x+2)(2-x)=1
b. (x+1)^3- (x-1)^3 - 6(x-1)^2=-10
Bài 2:
a: \(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
=>4x-27=1
hay x=7
b: \(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x-1\right)^2+10=0\)
\(\Leftrightarrow6x^2+12-6x^2+12x-6=0\)
=>12x+6=0
hay x=-1/2