Cho a,b,c >0 tm a+b+c=1.Tìm max \(S=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
1. Tìm max
\(M=\dfrac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
2. Cho a,b,c >0 và a+b+c=\(\sqrt{2}\)
Tìm max \(N=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)
\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)
\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)
Cho a,b,c >0 và a=max{a,b,c} .Tìm gtnn của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
Cho a,b,c>0 và a=max{a,b,c}.Tìm min của :
\(S=\dfrac{a}{b}+2\sqrt{1+\dfrac{b}{c}}+3\sqrt[3]{1+\dfrac{c}{a}}\)
a) cho a,b,c không âm ; a+b+c=1 . tìm Max S
biết \(S=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{a+c}\)
b)a,b,c,d không âm ; a+b+c+d=1,tìm Max S
Biết \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\)
cho a,b,c>=0 tm a+b+c=1009. tim max
P=\(\sqrt{2018a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2018b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2018c+\frac{\left(a-b\right)^2}{2}}\)
Cho a,b,c >0 t/m a+b+c=abc-2. Tìm max
\(P=\sqrt{\dfrac{1}{a+1}}+\sqrt{\dfrac{1}{b+1}}+\sqrt{\dfrac{1}{c+1}}\)
\(a+b+c+2=abc\)
\(\Leftrightarrow2a+2b+2c+3+ab+bc+ca=abc+ab+bc+ca+a+b+c+1\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(c+1\right)\left(b+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=1\)
Đặt \(\left(\dfrac{1}{a+1};\dfrac{1}{b+1};\dfrac{1}{c+1}\right)=\left(x;y;z\right)\)
\(\Rightarrow x+y+z=1\)
BĐT trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}=\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{3}\) hay \(a=b=c=2\)
Cho a; b >0 tm a+2b=< 3. Tìm max của P= \(\sqrt[3]{a+7}+2\sqrt[3]{b+7}\)
Ta có \(4\sqrt[3]{a+7}\le\frac{a+7+8+8}{3}=\frac{a+23}{3}\)
\(4\sqrt[3]{b+7}\le\frac{b+23}{3}\)
Từ đó ta có
\(4P=4\sqrt[3]{a+7}+4\sqrt[3]{b+7}+4\sqrt[3]{b+7}\)
\(\le\frac{a+b+b+23×3}{3}=\frac{a+2b+23×3}{3}\le24\)
\(\Rightarrow P\le6\)
Đạt được khi a = b = 1
Áp dụng bất đẳng thức cosi cho 3 số không âm là a + 7, 8, 8 ta có
\(a+7+8+8\ge3\sqrt[3]{\left(a+7\right)×8×8}=3×4\sqrt[3]{a+7}\)
\(\Leftrightarrow\frac{a+23}{3}\ge4\sqrt[3]{a+7}\)
Vầy dễ hiểu chưa bạn
Cho a,b,c\(\ge0\)thỏa mãn\(a+b+c=1\)
a)Tìm max A=\(\sqrt{2a^2+a+1}+\sqrt{2b^2+b+1}+\sqrt{2c^2+c+1}\)
b)Tìm min,max B=\(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
c)Tìm min,max C=\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
Cho a,b,c > 0 và a+b+c=1
Tìm max \(\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
Ta có:
\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{\left(a+b\right)+\frac{2}{3}+\frac{2}{3}}{3}\)
Tương tự:
\(\sqrt[3]{b+c}\le\frac{\left(b+c\right)+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\sqrt[3]{c+a}\le\frac{\left(c+a\right)+\frac{2}{3}+\frac{2}{3}}{3}\)
\(\Rightarrow\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\le\sqrt[3]{\frac{9}{4}}.\frac{2\left(a+b+c\right)+4}{3}\)
\(=\sqrt[3]{\frac{9}{4}}.\frac{6}{3}=\sqrt[3]{18}\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{2}{3}\\b+c=\frac{2}{3}\\c+a=\frac{2}{3}\end{cases}}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\))
Em làm sai tại đây nhé:
\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\sqrt[3]{\frac{9}{4}}.\frac{1}{3}.\left(a+b+\frac{2}{3}+\frac{2}{3}\right)\)
Thêm giùm mình \(.\sqrt[3]{\frac{9}{4}}\)ở ba bđt nhé
Như vậy thì sẽ đúng