Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 1 2018 lúc 9:28

Jungkook Jeon
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
tthnew
16 tháng 1 2021 lúc 20:40

Hướng dẫn. 

Bạn chứng minh bất đẳng thức $\dfrac{1}{\sqrt{1+8a^3}} \geqslant \dfrac{5}{9}-\dfrac{2}{9}a^2$ rồi cộng lại là xong.

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2019 lúc 16:39

Đạt TL
Xem chi tiết
zZz Cool Kid_new zZz
16 tháng 7 2020 lúc 20:52

Mình xài p,q,r nhé :))

Ta có:

\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)

\(a^4+b^4+c^4=1-4q+2q^2+4r\)

Khi đó BĐT tương đương với:

\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)

\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)

\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )

Khách vãng lai đã xóa
tth_new
21 tháng 7 2020 lúc 7:43

\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)

\(=p^3-3pq+3r\)

--------------------------------------

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)

\(=p^4-4p^2q+2q^2+4pr\)

Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq

Khách vãng lai đã xóa
Đạt TL
17 tháng 7 2020 lúc 12:39

Đọc xong lú luôn @_@. Khúc đầu chả hiểu gì hết 

mà thôi cũng phải tk ông a 1 cái vì có tâm với nghề

Khách vãng lai đã xóa
Melanie Granger
Xem chi tiết
Anh Mai
Xem chi tiết
Anh Mai
Xem chi tiết
Võ Thạch Đức Tín 1
15 tháng 2 2016 lúc 10:45

Ch0 a>0 và n là 1 số tự nhiên

Chứng minh rằng an+1an−2⩾n2(a+1a−2)

Lời giải:

Bất đẳng thức tương đương với (an−1+an−2+...+a+1)≥n2an−1 (hiển nhiên theo AM-GM)

Cách khác:

Do tính đối xứng giữa a và 1a nên ta có thể giả sử a ≥ 1.  đặt √a =x ≥ 1.bdt ⇔ x2n+1x2n−2≥n2(x2+1x2−2)⇔(xn−1xn)2≥n2(x−1x)2⇔x^{n}-\frac{1}{x^{n}}\geq n(x-\frac{1}{x})$①.

Với x=1 thì ① đúng

Với x>1 thì ① ⇔xn−1+xn−3...+1xn−3+1xn−1≥n (đúng vì theo bđt AM-GM).

Dấu bằng xảy ra khi x=1 ⇔a=1

 

mặc Kệ ĐỜi
15 tháng 2 2016 lúc 9:40

đáp án là 24

pham minh quang
15 tháng 2 2016 lúc 10:15

mình mới học lớp 7 thôi ai đi qua thì cho mình vài mọi người 

Anh Mai
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 21:09

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)