Giải bất phương trình l o g 2 ( 3 x - 2 ) > l o g 2 ( 6 - 5 x ) được tập nghiệm là (a;b). Hãy tính tổng S=a+b
A. S= 26/5
B. S= 8/5
C. S= 28/15
D. S= 11/5
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
Giải bất phương trình g ' ( x ) ≤ 0 với g ( x ) = x 2 + 3 x − 9 x − 2
A. S = (1; 3)
B. S = 1 ; 3 / 2
C. S = − ∞ ; 1 ∪ ( 3 ; + ∞ )
D. S = − ∞ ; 1
Ta có
g ' ( x ) = ( 2 x + 3 ) . ( x − 2 ) − 1. ( x 2 + 3 x − 9 ) ( x − 2 ) 2 = x 2 − 4 x + 3 ( x − 2 ) 2
Mà g ' ( x ) ≤ 0
⇔ x 2 − 4 x + 3 ≤ 0 x − 2 ≠ 0 ⇔ 1 ≤ x ≤ 3 x ≠ 2 ⇔ x ∈ 1 ; 3 \ 2
Vậy tập nghiệm bất phương trình là: S=[1 ; 3]\{2}
Chọn đáp án B
Cho f ( x ) = 2 x 3 + x − 2 v à g ( x ) = 3 x 2 + x + 2 .
Giải bất phương trình f′(x) > g′(x).
Giải các bất phương trình g ' ( x ) ≤ 0 v ớ i g ( x ) = x 2 - 5 x + 4 x - 2
Giải các phương trình sau:
\(\begin{array}{l}a)\;sinx = \frac{{\sqrt 3 }}{2}\\b)\;sin(x + {30^o}) = sin(x + {60^o})\end{array}\)
\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)
Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)
Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).
\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)
Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).
Cho f x = 2 x 3 + x − 2 , g x = 3 x 2 + x + 2 . Giải bất phương trình f ' ( x ) > g ' ( x )
A. x ∈ − ∞ ; 1 ∪ 3 ; + ∞
B. x ∈ − ∞ ; 0 ∪ 1 ; + ∞
C. x ∈ 0 ; 3
D. x ∈ 0 ; 1 ∪ 1 ; 3
Đáp án B
Ta có:
f ' x = 2 x 3 + x − 2 / = 6 x 2 + 1
g ' x = 3 x 2 + x + 2 / = 6 x + 1
f ' x > g ' x ⇔ 6 x 2 + 1 > 6 x + 1 ⇔ 6 x 2 − 6 x > 0 ⇔ x ∈ − ∞ ; 0 ∪ 1 ; + ∞
Cho góc Nhọn Xoy , lấy điểm O' bất kỳ - 1) Vẽ X' , O' , Y' là góc nhọn sao cho : O'Y'// Oy , O'x' // Ox . Dùng thước đo góc để so sánh Xoy và x'o'y'
2 ) Vẽ X'o'y' Là góc tù sao cho : O'X' // Ox , O'y // Oy , Dùng thước đo góc để xét mối quan hệ 2 góc Xoy và x'o'y'
1, Góc xOy = x'O'y'
2, 2 góc đều là góc tù,có cùng số đo độ
Cho f x = 2 x 3 − x 2 + 3 , g x = x 3 + x 2 2 − 3 . Giải bất phương trình f ' ( x ) > g ' ( x ) .
A. x ∈ 0 ; 1
B. x ∈ − 1 ; 0
C. x ∈ − ∞ ; 0 ∪ 1 ; + ∞
D. x ∈ − ∞ ; − 1 ∪ 0 ; + ∞
Chọn C
Ta có
f ' x = 2 x 3 − x 2 + 3 / = 6 x 2 − 2 x , g ' x = x 3 + x 2 2 − 3 / = 3 x 2 + x
f ' x > g ' x ⇔ 6 x 2 − 2 x > 3 x 2 + x ⇔ 3 x 2 − 3 x > 0 ⇔ x ∈ − ∞ ; 0 ∪ 1 ; + ∞
Cho: f ( x ) = 2 x ; g ( x ) = x 2 2 - x 3 3 Giải bất phương trình f(x) ≤ g'(x).