sin2 22 độ+ SIN2 68 độ
Chứng minh
sin2(45độ+@) - sin2(30độ - @) - sin 15 độ . cos2( 15 độ + 2@ ) = sin 2@
Dấu alpha minh ko gỏ đc nên thế bằng @ nha.
Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)
Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)
\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)
\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)
\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)
\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))
\(=sin2\alpha=VP\)
Vậy đẳng thức được chứng minh.
Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.
bài 2 Tisnhg ía trị biểu thức:
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
= cos260o - cos250o - sin250o + sin260o
= (cos260o + sin260o) - (cos250o + sin250o)
= 1 - 1 = 0
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
= sin265o - sin255o + cos245o - cos255o + cos265o
= (sin265o + cos265o) - (sin255o + cos255o) + cos245o
= 1 - 1 +1/2
= 1/2
Rút gọn \(\dfrac{sin2\alpha+sin5\alpha-sin3\alpha}{1+cos\alpha-2sin^22\alpha}\)
\(\dfrac{sin2\alpha+sin5\alpha-sin3\alpha}{1+cos\alpha-2sin^22\alpha}\)
\(=\dfrac{2cos\dfrac{5\alpha}{2}.sin\left(-\dfrac{\alpha}{2}\right)+2sin\dfrac{5\alpha}{2}.cos\dfrac{5\alpha}{2}}{cos4\alpha+cos\alpha}\)
\(=\dfrac{2cos\dfrac{5\alpha}{2}.\left(sin\dfrac{5\alpha}{2}-sin\dfrac{\alpha}{2}\right)}{2cos\dfrac{5\alpha}{2}.cos\dfrac{3\alpha}{2}}\)
\(=\dfrac{4cos\dfrac{5\alpha}{2}.cos\dfrac{3\alpha}{2}.sin\alpha}{2cos\dfrac{5\alpha}{2}.cos\dfrac{3\alpha}{2}}\)
\(=2sin\alpha\)
A=sin2 5\(^{\bigcirc}\)+ sin2 85\(^{\bigcirc}\)
Sử dụng 2 công thức: \(sina=cos\left(90^0-a\right)\) và \(sin^2a+cos^2a=1\) ta có:
\(A=sin^25^0+cos^2\left(90^0-85^0\right)=sin^25^0+cos^25^0=1\)
Chứng minh rằng:
a. Sin2(pi/8 + x) - sin2(pi/8 - x) = sin2x.căn2 + 2
Rút gọn A= sin2 anpha + có2 anpha + 3 sin2 anpha - có2 anpha
Có bao nhiêu cặp số thực (x; y) sao cho (x+1)y, xy và (x-1)y là số đo ba góc một tam giác (tính theo rad) và sin 2 [ ( x + 1 ) y ] = sin 2 ( x y ) + sin 2 [ ( x - 1 ) y ]
A. 4.
B. 1
C. 3.
D. 2.
Đáp án B
Theo giả thiết có và
Và thay vào đẳng thức điều kiện có:
Đối chiếu với điều kiện nhận
Cho tam giác abc nhọn, h,k,e là chân đường cao hạ từ a,b,c. biết rằng SABC = 4 SHKE . Cm sin2 A + sin2 B + sin2 C = 9/4.
Ai giúp mình ới ạ, mình bí rị rồi :< Mình cảm ơn
\(S_{HKE}=S_{ABC}-S_{AKE}-S_{BHE}-S_{CHK}\)
\(\Leftrightarrow\dfrac{S_{HKE}}{S_{ABC}}=1-\dfrac{S_{AKE}}{S_{ABC}}-\dfrac{S_{BHE}}{S_{ABC}}-\dfrac{S_{CHK}}{S_{ABC}}\)
\(\Leftrightarrow\dfrac{1}{4}=1-\dfrac{\dfrac{1}{2}AE.AK.sinA}{\dfrac{1}{2}AB.AC.sinA}-\dfrac{\dfrac{1}{2}BH.BE.sinB}{\dfrac{1}{2}AB.BC.sinB}-\dfrac{\dfrac{1}{2}CH.CK.sinC}{\dfrac{1}{2}AC.BC.sinC}\)
\(\Leftrightarrow\dfrac{AE.AK}{AB.AC}+\dfrac{BH.BE}{AB.BC}+\dfrac{CH.CK}{AC.BC}=\dfrac{3}{4}\)
(Để ý rằng \(\dfrac{AE}{AC}=cosA\) do tam giác ACE vuông tại E và tương tự...)
\(\Leftrightarrow cosA.cosA+cosB.cosB+cosC.cosC=\dfrac{3}{4}\)
\(\Leftrightarrow cos^2A+cos^2B+cos^2C=\dfrac{3}{4}\)
\(\Leftrightarrow1-sin^2A+1-sin^2B+1-sin^2C=\dfrac{3}{4}\)
\(\Leftrightarrow sin^2A+sin^2B+sin^2C=\dfrac{9}{4}\)
Chứng minh đẳng thức
a) \(\dfrac{1-sin2\alpha+cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\left(\dfrac{\pi}{4}-\alpha\right)\)
b) \(\dfrac{1-cos\alpha+cos2\alpha}{sin2\alpha-sin\alpha}=cot\alpha\)
\(\dfrac{1+cos2a-sin2a}{1+cos2a+sin2a}=\dfrac{2cos^2a-2sina.cosa}{2cos^2a+2sinacosa}\)
\(=\dfrac{2cosa\left(cosa-sina\right)}{2cosa\left(cosa+sina\right)}=\dfrac{cosa-sina}{cosa+sina}=\dfrac{\sqrt{2}sin\left(\dfrac{\pi}{4}-a\right)}{\sqrt{2}cos\left(\dfrac{\pi}{4}-a\right)}=tan\left(\dfrac{\pi}{4}-a\right)\)
\(\dfrac{1+cos2a-cosa}{sin2a-sina}=\dfrac{2cos^2a-cosa}{2sina.cosa-sina}=\dfrac{cosa\left(2cosa-1\right)}{sina\left(2cosa-1\right)}=\dfrac{cosa}{sina}=cota\)