Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Vân
Xem chi tiết
hieu12
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 6:55

\(y'=6x^2-4x-4\)

\(y'\left(0\right)=-4\)

\(y\left(0\right)=1\)

Do đó pt tiếp tuyến tại điểm có hoành độ x=0 là:

\(y=-4\left(x-0\right)+1\Leftrightarrow y=-4x+1\)

Thầy Cao Đô
Xem chi tiết
Hoang Hai Nam
27 tháng 4 2022 lúc 10:53

1

Phạm Thanh Thu
30 tháng 4 2022 lúc 22:04

Ta có y′=3x2−6x+1y′=3x2−6x+1.

Gọi M(x0;y0)M(x0;y0) là tiếp điểm.

Ta có x0=1x0=1 do đó y0=13−3.12+1−1=−2y0=13−3.12+1−1=−2 ;

y′(1)=3.12−6.1+1=−2y′(1)=3.12−6.1+1=−2.

Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 11 là y=y′(1)(x−1)+(−2)⇒y=−2x

Đỗ Ngọc	Hùng
21 tháng 4 2023 lúc 8:23

loading...  

Thầy Cao Đô
Xem chi tiết
Nguyễn Tất Đạt
16 tháng 5 2021 lúc 21:18

\(f'\left(x\right)=3x^2-6x+1\Rightarrow f'\left(1\right)=-2\)

Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 là:

\(\Delta:y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\Rightarrow y=\left(-2\right)\left(x-1\right)-2\)

Khách vãng lai đã xóa
Đoàn Trắc Thịnh
17 tháng 5 2021 lúc 7:09

Ta có y'=3x^2 - 6x +1 

gọi M(x0;y0) là tiếp điểm

Ta có x0 =1 do đó yo =1^3 -3.1^2+1-1=-2

y'(1)=3.1^2-6.1+1=-2

Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1 là y=y'(1)(x-1)+(-2)=>y=-2x

Khách vãng lai đã xóa
Vũ Đình Việt
17 tháng 5 2021 lúc 7:18

Ta có {y}'=3{{x}^{2}}-6x+1.

Gọi M\left( {{x}_{0}};\,{{y}_{0}} \right) là tiếp điểm.

Ta có {{x}_{0}}=1 do đó {{y}_{0}}={{1}^{3}}-{{3.1}^{2}}+1-1=-2 ;

{y}'(1)={{3.1}^{2}}-6.1+1=-2.

Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 1 là y=y'\left( 1 \right)\left( x-1 \right)+\left( -2 \right) \Rightarrow y=-2x

Khách vãng lai đã xóa
thi phuong vu
Xem chi tiết
thi phuong vu
25 tháng 12 2017 lúc 22:18

cxvfdbhfcx

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:27

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:35

2.

(C1) có tâm \(I\left(1;1\right)\) bán kính \(R_1=\sqrt{2}\)

(C2) có tâm \(J\left(2;3\right)\) bán kính \(R_2=4\)

Gọi tiếp tuyến chung d có pt: \(ax+by+c=0\)

\(\left\{{}\begin{matrix}d\left(I;d\right)=R_1\\d\left(J;d\right)=R_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=4\end{matrix}\right.\)

\(\Rightarrow2\sqrt{2}\left|a+b+c\right|=\left|2a+3b+c\right|\)

? Đề nghiêm túc đấy chứ? Cho kiểu này thì sấp mặt, tối thiểu pt (C1) cũng có dạng \(x^2+y^2-2x-2y+1=0\) để học sinh còn thở chứ.

Nguyễn Việt Lâm
9 tháng 4 2021 lúc 20:48

Ủa, nhìn lại thì bài 2 người ta cho đề kiểu hack não.

\(\overrightarrow{IJ}=\left(1;2\right)\Rightarrow IJ=\sqrt{5}< R_2-R_1=4-\sqrt{2}\)

Do đó \(\left(C_2\right)\) chứa \(\left(C_1\right)\) nên ko tồn tại tiếp tuyến chung của 2 đường tròn

 

Phạm Bích liễu Huỳnh
Xem chi tiết
VÕ BẢO TRÂN_nh
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Hồng Phúc
4 tháng 4 2021 lúc 0:36

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

Hồng Phúc
4 tháng 4 2021 lúc 0:46

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)

Hồng Ngọc
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 21:52

\(y'=2x-4\)

a.

\(y'\left(-2\right)=2.\left(-2\right)-4=-8\)

Phương trình tiếp tuyến:

\(y=-8\left(x+2\right)+15\Leftrightarrow y=-8x-1\)

b.

Gọi \(x_0\) là hoành độ tiếp điểm

\(\Rightarrow x_0^2-4x_0+3=3\Rightarrow x_0^2-4x_0=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y'\left(0\right)=-4\\x_0=4\Rightarrow y'\left(4\right)=4\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}y=-4\left(x-0\right)+3\\y=4\left(x-4\right)+3\end{matrix}\right.\) \(\Leftrightarrow...\)

c.

Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow y'\left(x_0\right)=k=4\)

\(\Rightarrow2x_0-4=4\Rightarrow x_0=4\)

\(\Rightarrow y\left(4\right)=3\)

Pttt: \(y=4\left(x-4\right)+3\Leftrightarrow y=4x-13\)