Giả sử ∫ 2 x 3 + 5 x 2 - 2 x + 4 e 2 x d x = a x 3 + b x 2 + c x + d x e 2 x + C . Khi đó a+b+c+d bằng
A. -2
B. 3
C. 2
D. 5
c7:Cho biêu thức A=x+2 phần y-1 và B 4x(x+5) phần y+2
a) giả sử biết y=2 giải pt ẩn x A+3=B
b) Giả sử đẫ biết x=-3 giải pt ẩn y A-B =13
Giả sử phương trình \(x^5-x^3+x-2=0\) có nghiệm thực \(x_0\). CMR :
\(\sqrt[6]{3}< x_0< \sqrt[6]{4}\)
c7: Cho hai biểu thức A=x+2 phần y-1 và B=4x(x+5) phần y+2
a) Giả sử đã biêt y=2 hãy giải pt ẩn x A+3 =B
b) Giả sử đã biêt x=-3 hãy giải pt ẩn y A-B =13
a: y=2 thì \(A=\dfrac{x+2}{2-1}=x+2\)
\(B=\dfrac{4x\left(x+5\right)}{2+2}=x\left(x+5\right)\)
A+3=B
=>x+5=x(x+5)
=>(x+5)(1-x)=0
=>x=1 hoặc x=-5
b: Khi x=-3 thì \(A=\dfrac{-3+2}{y-1}=\dfrac{-1}{y-1}\)
\(B=\dfrac{4\cdot\left(-3\right)\cdot\left(-3+5\right)}{y+2}=\dfrac{-12\cdot2}{y+2}=\dfrac{-24}{y+2}\)
A-B=13
\(\Leftrightarrow-\dfrac{1}{y-1}+\dfrac{24}{y+2}=13\)
\(\Leftrightarrow13\left(y-1\right)\left(y+2\right)=-y-2+24y-24\)
\(\Leftrightarrow13y^2+13y-26=23y-26\)
=>y(13y-10)=0
=>y=0 hoặc y=10/13
giả sử các số thực x y z đều lớn hơn -1 và thỏa mãn điều kiện x^3+y^3+z^3>=x^2+y^2+z^2 cmr
\(x^5+y^5+z^5>=x^2+y^2+z^2\)
Giả sử x,y,z thuộc R và:
\(x+y+z=1\)
\(x^2+y^2+z^2=2\)
\(x^3+y^3+z^3=3\)
Hãy tính: \(x^5+y^5+z^5\)?
Giả sử a * b = 3a - b. Hỏi x bằng bao nhiêu nếu: 2 * (5 * x ) = 1?
Ta có 2*(5*x) = 1
<=> 3.2 - (5*x) = 1
<=> 6 - (3.5 - x) = 1
<=> 6 - (15-x) = 1
<=> 6 - 15 + x = 1
<=> (-9) + x = 1
<=> x = 10
Giả sử:
2 x 4 =14
5 x 3 =22
3 x 5=4,
Vậy, 7 x 18= ?
Các bạn giải bài này hộ mình nhé, cảm ơn.
KẾT BẠN VÀ NHẬP HỘI NGÔI SAO THỜI TRANG NHÉ !
Ko có đâu bạn!!
Vốn 5.3=3.5
Mà đề bài là :
5.3=22
3.5=4
Vậy làm kiểu gì???????
giả sử \(x_1,x_2\) là nghiệm của phương trình \(x^2-2\sqrt{5}x+2\)=0 Tính giá trị biểu thức E=\(\dfrac{x_1^2+x_1x_2+x^2_2}{x_1^2+x^2_2}\)
\(\Delta'=\left(-\sqrt{5}\right)^2-1.2=5-2=3>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\sqrt{5}\\x_1x_2=2\end{matrix}\right.\)
\(E=\dfrac{x^2_1+x_1x_2+x^2_2}{x^2_1+x^2_2}\\
=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}\\
=\dfrac{\left(2\sqrt{5}\right)^2-2}{\left(2\sqrt{5}\right)^2-2.2}\\
=\dfrac{20-2}{20-4}\\
=\dfrac{18}{16}\\
=\dfrac{9}{8}\)
\(E=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}=\dfrac{4.5-2}{4.5-2.2}=\dfrac{18}{16}=\dfrac{9}{8}\)
a,cho 2 số x,y thõa mãn x^3-x^2+x-5 và y^3-2y^2+2y+4.tính x+y
b, giả sử a,b la hai số thưc phân biêt thõa mãn a^2+3a=b^3+3b=2
cmr 1, a+b=-3 2, a^3+b^3=-45
Giả sử f(x) chia x+1 dư 5 khi chia cho x-2 dư 7. Hỏi khi chia f(x) cho (x+1)(x-2) thì dư bao nhiêu?
Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\) (1)
Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\) (2)
Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\) (Với g(x) , h(x), t(x) là các đa thức)
Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)
Theo (1) thì b - a = 5.
Ta cũng có :
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)
Theo (2) thì b + 2a = 7.
Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)