Cho ( C ) : y = 2 - 1 x 3 - 3 x . Tìm hoành độ điểm cực tiểu của (C) ( x C T )
1, Cho x; y; z ≠0 và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)+ \(\dfrac{1}{z}\)=\(\dfrac{2}{2x+y+2z}\). Cmr: (2x+y)(y+2z)(z+x)= 0
2, Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Cmr: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
Gấp ạ, ai giúp mình với!!!!
2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)
1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).
CM:....
Đặt 2x = x', 2z = z'.
Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)
\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)
\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)
\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)
1. Cho 4x+y =1 c/m 4x^2 + y^2 >= 1/5
2. Cho x+y+2=1 c/m x^2 +y^2 +2^2 >= 1/3
( giúp mk với một bài cũng được ).
Bài 1: Cho x+y+z =0 và x^2+ y^2 + z^2=14
Tính S= x^4+y^4+z^4
Bài 2: Cho 1/x +1/y +1/z= 13 và x+y+z= xyz
Tính S= 1/x^2 +1/y^2 +1/z^2
Bài 3: Cho a,b,c khác 0 và a+b+c = 0
Tính S= 1/ a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/ c^2+a^2-b^2
Bài 4: Cho x>y>0 và 3x^2+ 3y^2 = 10xy
Tính S= x-y / x+y
Bài 5: Cho a^2+4b+4 và b^2+ 4c+4 và c^2+ 4a+4 = 0
Tính S= a^18+ b^18+ c^18
Cho phương trình bậc hai : x2-2x-m2=0 có các nghiệm x1,x2.Hãy lập phương trình bậc hai có các nghiệm y1,y2 sao cho
a) y1=x1-3 và y2=x2-3
b) y1=2x1-1 và y2=2x2-1
cho x/a+y/b+z/c=1,
a/x+b/y+c/z=0
chứng minh:x^2/a^2+y^2/b^2+z^2/c^2=1
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) \(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\) \(\Rightarrow ayz+bxz+cxy=0\) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) \(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân
cho biểu thức : P = x2/(x+y)(1-y) + y2/(x+y)(1+x) + x2 y2/(x+1)(1-y)
1. rút gọn P
2. tìm các cặp số x,y thuộc Z sao cho P = 3
cho a,b, c, x, y, z :{a/x+b/y+c/z=0;x/a+y/b+z/c=1
CMR:x^2/a^2+y^2/b^2+z^2/c^2=1
Bài 1 : Tìm x , y thuộc Z ( y khác 0 ) sao cho x/3 = 1/y = 1/2
Bài 2 : Cho 1/c = 1/2.(1/a + 1/b ) ( với a , b,c khác 0 ; b khác c ) . Chứng minh rằng : a/b = a-c / c-b