\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) \(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\) \(\Rightarrow ayz+bxz+cxy=0\) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) \(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)