Tìm tất cả các giá trị của m để phương trình 2 x - 6 = m x - 1 có 4 nghiệm phân biệt.
Tìm tất cả các giá trị thực của tham số m để phương trình (m^2-4)x=3m+6 vô nghiệm
cần gấp
\(\left(m^2-4\right)x=3m+6\Leftrightarrow\left(m^2-4\right)x-3m-6=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4=0\\-3m-6\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-1=0\). Tìm tất cả các giá trị của m để phương trình có nghiệm
phương trình có nghiệm khi:
\(\Delta\)\(\ge\)0<=>[-(2m+1)]^2-4.(m^2-1)\(\ge\)0
<=>(2m+2)^2-4m^2+4\(\ge\)0
<=>4m^2+8m+4-4m^2+4\(\ge\)0
<=>8m+8\(\ge\)0
<=>8(m+1)\(\ge\)0
<=>m\(\ge\)-1
vậy m\(\ge\)-1 thì phương trình có nghiệm
△≥0⇔(2m+2)^2-4(m^2-1)≥0
⇔4m^2+8m+4-4m^2+4≥0
⇔8m+8≥0
⇔m≥-1
Vậy phương trình có nghiệm khi m≥-1
cho phương trình \(x^2-2mx+m-4=0\) (1).Tìm tất cả các giá trị nguyên của m để phương trình (1) có 2 nghiệm nguyên
\(pt:x^2-2mx+m-4=0\left(1\right)\)
\(\Delta'=\left(-m\right)^2-\left(m-4\right)=m^2-m+4=m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}-\dfrac{1}{4}+4\)
\(=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{6}>0\left(\forall m\right)\)
=> \(pt\left(1\right)\) luôn có 2 nghiệm phân biệt x1,x2 \(\forall m\)
\(Theo\) \(\)Vi ét\(=>\left\{{}\begin{matrix}x1+x2=2m\left(1\right)\\x1x2=m-4\left(2\right)\end{matrix}\right.\)
từ(1)
với \(x1x2=m-4=>m=x1x2+4\)
thay \(m=x1x2+4\) vào (1)\(\)\(=>x1+x2=2\left(x1x2+4\right)\)
\(< =>x1+x2=2x1x2+8\)
\(< =>x1+x2-2x1x2=8\)
\(< =>2x1+2x2-4x1x2=16\)
\(=>2x1\left(1-2x2\right)-\left(1-2x2\right)=15\)
\(< =>\left(2x1-1\right)\left(1-2x2\right)=16\)(3)
để (3) nguyên \(< =>\left(2x1-1\right)\left(1-2x2\right)\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
đến đây bạn tự lập bảng giá trị để tìm x1,x2 rồi từ đó thay thế x1,x2 vào(2) để tìm m nhé (mik ko làm nữa dài lắm)
Tìm tất cả các giá trị của m để bất phương trình 2 | x - m | + x 2 + 2 > 2 m x thỏa mãn với mọi x
A. m > - 2
B. không tồn tại m
C. - 2 < m < 2
D. m < 2
Cho phương trình: x²-4x+m-5=0
Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: (x1-1)(x2²-3x2+m-6)=-3
Tìm tất cả các giá trị thực của tham số m để bất phương trình mx^2 + (m-1)x +m -1
cho phương trình x^2 + 4x -m=0. Tìm tất cả các giá trị của m để phương trình (1) có đúng 1 nghiệm thuộc khoảng(-3;1)
Tìm tất cả các giá trị của tham số m để phương trình ln ( m + ln ( m + x ) ) = x có 2 nghiệm phân biệt
A. m ≥ 0
B. m > 1
C. m < e
D. m ≥ -1
Tìm tất cả các giá trị của tham số m để bất phương trình (m-1)x^2-(m-1)x+5 ≥ 0, ∀x ∈ R
Để bất phương trình luôn có nghiệm thì
\(\left\{{}\begin{matrix}\left(m-1\right)^2-4\cdot1\cdot5< 0\\1>=0\end{matrix}\right.\Leftrightarrow\left(m-1\right)^2< 20\)
\(\Leftrightarrow-2\sqrt{5}+1< x< 2\sqrt{5}+1\)
Tìm tất cả các giá trị của m để phương trình m x 2017 x 2018 − 1 + x − 2 = 0 có nghiệm.
A. m ∈ ℝ
B. m ∈ ℝ \ { 0 }
C. m ∈ − 1 ; 1
D. m ∈ 0 ; 1