tìm số tự nhiên x,y
a) 2x+1 X 3y=12x
b) 10x : 5y=20y
c) -2x=4y-1 và 27=3x=8
tìm x,y:
a) 2x+1.3y=12x
b) 10x:5y=20y
a: \(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
2x+1.3y=12x => 2x+1.3y=4x.3x
=> 2x+1.3y=22x.3x => x + 1 = 2x và y = x
=> x = 1 và y = x = 1
Vậy x=y=1
Tìm x và y
a) 3x=5y và 2x+3y=38
3x = 5y
⇒ x/5 = y/3
⇒ 2x/10 = 3y/9
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
2x/10 = 3y/9 = (2x + 3y)/(10 + 9) = 38/19 = 2
x/5 = 2 ⇒ x = 2.5 = 10
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 10; y = 6
Ta có: \(3x=5y\Rightarrow\dfrac{y}{3}=\dfrac{x}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{2x+3y}{2\cdot5+3\cdot3}=\dfrac{38}{19}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=5\cdot2=10\)
\(\Rightarrow\dfrac{y}{3}=2\Rightarrow y=3\cdot2=6\)
Vậy: ...
Bài tập 2. Tìm hai số x, y biết:
a)
x 5
=
y 2
và 3x−2y = −55;
b)
x 3
=
y 2
và 2x + 5y = 48;
c) −2x = 5y và x + y = 30;
d) 3x = 4y và 2x + 3y = 34.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
phân tích thành nhân tử a)2x(x-7)-5y(x-7)
b)5x^3y+10x^2y+5xy
c)4y^2-4y-x^2+1
d)x(x+1)(x+2)(x+3)+1
a) \(2x\left(x-7\right)-5y\left(x-7\right)=\left(x-7\right)\left(2x-5y\right)\)
b) \(5x^3y+10x^2y+5xy=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
c) \(4y^2-4y-x^2+1=\left(2y-1\right)^2-x^2=\left(2y-1-x\right)\left(2y-1+x\right)\)
d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)
a: \(=\left(x-7\right)\left(2x-5y\right)\)
b: \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
a) \(=\left(2x-5y\right)\left(x-7\right)\)
b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
c) \(=\left(\left(4y^2-4y+1\right)-x^2\right)=\left(2y-1\right)^2-x^2=\left(2y-1+x\right)\left(2y-1-x\right)\)
Tìm x; y; z biết:
1) 2x = 3y - 2x và x + y = 14
2) 5x = 4x + 2y và x + y = -56
3) 3x + 2y = 7y - 3x và x - y = 10
4) 6x - 2y = 3y - 4x và x + y = -99
5) 7x - 2y = 5x - 3y và 2x + 3y = 20
6) 4x - 3y = 7y - 6x và 2x + 3y = 55
7) 2x = 3y = 4z - 2y và x + y + z = 45
8) 5x = 2y = 4z + y và x + y + z = 66
9) 2x = 5y = 3z - 2x và x + y + z = 62
10) 3x = 4y = 2z - x và x + y + z = 60
11) 2x = 3y - 2x = 5z và x - y + z = 99
12) 3x = 2y - 3z = 4z và x + y - z = 46
13) 2x = 3y - 2x = 4z - 3x và x - y + z = 44
14) 5x - 2y = 4y = 3z - 4y và x + y - z = 70
15) 2x - 3z = 4y - 2z = 7z và x + y + z = -99
16) 2x = 3y - 2x = 5z - 3y và x + y + z = 53
17) 3x = 4y - 2x = 7z - 4y và x + y - 2z = 10
18) 3x = 2y - 4x = 5z - 4y và x - y + x = 36
19) 5x - 3y = 4y = 3z + 10x và x + y + z = 28
20) 4x - 3z = 6y - x = z và 2x + 3y + 4z = 19
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)
tìm x,y,z
a, x-1/2= y+3/4= z-5/6 và 5z- 3x- 4y= 50
b, 2x= 3y; 5y= 7z và 3x +5z- 7y=30
Giúp mình đi nhé, nãy gửi lỗi
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
b)2x= 3y; 5y= 7z và 3x +5z- 7y=30
=>x/3=y/2;y/7=z/5
=>x/21=y/14=z/10
=>3x+5z-7y/63+50-98
=>30/15=2
=>x=42
y=28
z=20
nhớ tick nhé:))
3x+5y=-8 và 2x-3y=1. Tìm x và y.
3x+5y=-8
=>2.(3x+5y)=2.(-8)
=>6x+10y=-16 (*)
2x-3y=1
=>3.(2x-3y)=3.1
=>6x-9y=3 (**)
trừ 2 vế (*) và (**) ta được:
(6x+10y)-(6x-9y)=(-16)-3
=>6x+10y-6x+9y=-19
=>19y=-19
=>y=(-19):19=-1
thay y=-1 vào 2x-3y=1 ta được:
2x-3.(-1)=1
2x+3=1
2x=1-3
2x=-2
x=(-2):2
=>x=-1
Vậy x=y=-1
Tìm x,y biết:
a)3x - y = 13 và 2x + 4y = 60
b)5x + 2y = 69 và 4x = 3y
c)4x - 3y = 42 và 2x = 5y
a) Ta có: \(3x-y=13\) và \(2x-4y=60\)
Mà: \(2\left(x+2y\right)=60\Rightarrow x+2y=30\) (1)
Và: \(3x-y=13\Rightarrow6x-2y=26\) (2)
Cộng (1) với (2) theo vế ta có:
\(\left(x+6x\right)+\left(-2y+2y\right)=30+26\)
\(\Rightarrow7x=56\)
\(\Rightarrow x=8\)
Ta tìm được y:
\(8+2y=30\)
\(\Rightarrow2y=22\)
\(\Rightarrow y=11\)
b) Ta có: \(5x+2y=69\) và \(4x=3y\Rightarrow4x-3y=0\)
Mà: \(5x+2y=69\Rightarrow15x+6y=207\) (1)
\(4x-3y=0\Rightarrow8x-6y=0\) (2)
Cộng (1) và (2) theo vế ta có:
\(\left(15x+8x\right)+\left(6y-6y\right)=207+0\)
\(\Rightarrow23x=207\)
\(\Rightarrow x=\dfrac{207}{23}\)
\(\Rightarrow x=9\)
Ta tìm được y:
\(4\cdot9=3\cdot y\)
\(\Rightarrow3y=36\)
\(\Rightarrow y=\dfrac{36}{3}\)
\(\Rightarrow y=12\)
a,3x=4y-3y=7z-4y và x+y-2z=10
b,2x=3y-2x=5z-3y và x+y+z=53
c,5x-3y=4y=3z+10x và x+y+z=28
d,4x-3z=6y-x=z và 2x+3y+4z=19