Cho tam giác ABC có ∠ A = 60 ° . Chứng minh rằng: B C 2 = A B 2 + A C 2 - A B . A C
cho tam giác ABC có B=60, C<A
a,chứng minh rằng AB<BC
b,trên BC lấy D sao cho BD=BA chứng minh rằng tam giác ABD đều
c,AB,BC,CA
a) xét ΔABC ta có
C<A
=> AB < BC ( quan hệ giữa góc và cạnh đối diện trong Δ)
b)xét ΔABD ta có
BD = BA
=> ΔABD là Δ cân tại B
mà B=60o
=> ΔABD làΔ đều
Cho tam giác nhọn ABC , các đường cao BE và CF a, chứng minh tam giác AEB đồng dạng với tam giác AFC. Từ đó suy ra AF. AB=AE.AC b, chứng minh góc AEF=ABC c, nếu tam giác ABC có có góc A=60°. Chứng minh rằng SABC=4SAEF
Cho tam giác ABC cân tại A có góc B bằng \({60^o}\). Chứng minh rằng tam giác ABC đều.
Ta có: tam giác ABC cân tại A
Nên \(\widehat B = \widehat C = {60^o}\)( 2 góc đáy của tam giác cân )
Theo định lí về tổng 3 góc trong tam giác ta có : \(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat A = {180^o} - {60^o} - {60^o} = {60^o}\)
Vì \(\widehat A = \widehat B = \widehat C = {60^o}\)\( \Rightarrow \) tam giác ABC là tam giác đều
1.Cho tam giác ABC cân đỉnh A, góc BAx là góc ngoài tại đỉnh A của tam giác ABC. Chứng minh rằng góc BAx bằng 2.B
2.Cho tam giác ABC có góc A bằng 90, góc B bằng 60. Chứng minh rằng AB = 1/2 BC.
Cho tam giác ABC có góc B > góc C . Đường phân giác ngoài BAx của tam giác cắt tại E
a, Chứng minh rằng : AEB^ = B^ - C^ : 2
b, Tính số đo các B^, C^ biết A^ = 60 , AEB^ = 15
Cho tam giác nhọn ABC, có hai đường cao AH, BK cắt nhau tại D. a) Tính ABD khi 0 C 60 = . b) Chứng minh rằng nếu DA = DB thì tam giác ABC là tam giác cân.
Cho tam giác ABC có góc A khác 60 . Vẽ phía ngoài tam giác ABC các tam giác đều ABD , ACE . Trên nửa mặt phẳng BC chứa điểm A . Vẽ tam giác đều BCK
a, Chứng minh rằng ADKE là hình bình hành
b, Chứng minh rằng DK = CE
Tự ve hình nhé:
Góc CBK =DBK =60 => CBA=KBD mà BK=BC;BD=BA => Tam giác BKD =BCA (c-g-c)
=>DK =AC = AE.(1)
Tương tự Tam giác CKE =CBA => KE =AB =AD (2)
1;2 => AEKD là HBH ( có các cạnh đói = nhau)
b) DK =AC = CE
Hôm qua bận nên bạn thôn cảm nhé.
Cho tam giác ABC có ba góc nhọn, các đường cao BD, CE. Gọi M là trung điểm cạnh BC
a) Chứng minh rằng AE.AB=AF.AC
b) Chứng minh rằng DE=BC.cosA
c) Cho \(\widehat{BAC=60^0}\), Chứng minh tam giác MDE đều
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
Cho tam giác ABC có ba góc nhọn AB<AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao điểm của AB và DC a) Chứng minh rằng ∆ A D C = ∆ A B E b) Chứng minh rằng: D I B ^ = 60 ° c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng ∆ A M N đều d) Chứng minh rằng IA+IB=ID e) Chứng minh rằng IA là tia phân giác của góc DIE