Tính giá trị của biểu thức: − 1 2 − 3 2 + − 2 3
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Cho biểu thức
1 3 1
. 1 1 2
x x x A
x x
1) Tìm điều kiện của x để biểu thức A được xác định. 2) Rút gọn biểu thức A. 3) Tính giá trị của biểu thức A tại x 5. 4) Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)
Câu 2 :cho biểu thức (x-2/2x-2+3/2x-2-x+3/2x+2):1-x-3/x+1
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) Tính giá biểu thức với x=2005;x=1
c) Tìm giá trị của x để A có giá trị = -1002
a:
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-2}{2\left(x-1\right)}+\dfrac{3}{2\left(x-1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right):\dfrac{x+1-x+3}{x+1}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2-x-2+3x+3-x^2-2x+3}{2\left(x-1\right)}\cdot\dfrac{1}{2}\)
\(=\dfrac{-2}{4\left(x-1\right)}=\dfrac{-1}{2\left(x-1\right)}\)
Khi x=2005 thì \(A=\dfrac{-1}{2\cdot\left(2005-1\right)}=-\dfrac{1}{4008}\)
Vì x=1 không thỏa mãn ĐKXĐ
nên khi x=1 thì A không có giá trị
c: Để A=-1002 thì \(\dfrac{-1}{2\left(x-1\right)}=-1002\)
=>\(2\left(x-1\right)=\dfrac{1}{1002}\)
=>\(x-1=\dfrac{1}{2004}\)
=>\(x=\dfrac{1}{2004}+1=\dfrac{2005}{2004}\left(nhận\right)\)
1. Cho biểu thức A= (x-1)^2-3.
a. tính giá trị của biểu thức A với x = -2 b. tính giá trị nhỏ nhất của biểu thức A\(A=\left(x-1\right)^2-3\)
a) Với x = -2, ta có:
\(A=\left(-2-1\right)^2-3=6\)
b) \(\left(x-1\right)^2-3\ge3\text{ vì }\left(x-1\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow MIN_A=3\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy: \(MIN_A=3\Leftrightarrow x=1\)
Khong chac dau nhe .-.
A=(x-1)2-3
Với x=-2
Ta có:
A=(-2-1)2-3
A=(-3)2-3
A=9-6
A=3
Vậy A=3 với x=-2
b)Tính GTNN của biểu thức A
Để biểu thức A đạt GTNN <=>(x-1)2
<=>(x-1) đạt GTNN
<=>x=1
Vậy với x =1 thì biểu thức A đạt GTNN
Bài 3:
a, Tính giá trị của biểu thức A = \(5xy-10+3y\) tại \(x=2\) và \(y=-3\)
b, Tính giá trị của biểu thức B = \(8xy^2-xy-2x-10\) tại \(x=1\) và \(y=-1\)
a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)
b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)
=8+1-2-10
=-3
a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49
b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10
=8+1-2-10
=-3
Cho biểu thức: A = (x/x^2-4-4/2-x+1/x+2):3x+3/x^2+2x
a) Tìm điều kiện xác định của A và rút gọn biểu thức A;
b) Tính giá trị của biểu thức A khi |2x-3|-x+1=0
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên.
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
77) a) tính giá trị nhỏ nhất của biểu thức A=(x-1)(x-3)+11 b)tính giá trị lớn nhất của biểu thức B=5-4x^2+4x
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-4x^2+4x+5\)
\(=-\left(4x^2-4x+1-6\right)\)
\(=-\left(2x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
1. Tính Giá trị nhỏ nhất của biểu thứ (x+1)(x+2)(x+3)(x+6)+2010
2. Phân tích đa thức thành nhân tử (x-2)(x-4)(x-6)(x-8) +15
3. Tính giá trị biểu thức sau: x^2 +y= y^2 +x. tính giá trị của biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg
cho biểu thức: A=\(\dfrac{x^2+x-2}{x},B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}\)
a)tính giá trị biểu thức với A=3
b)rút gọn biểu thức B
c)tìm giá trị của x để biểu thức P=A.B đạt giá trị nhỏ nhất
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
Bài 8. a) Tính giá trị của biểu thức 0x2y4z + 7/2x2y4z – 2/5x2y4z tại x = 2 ; y =1/2 ; z = -1.
a) Tính giá trị của biểu thức 2/5x4z3y – 0x4z3y + x4z3y tại x = 2 ; y =1/2 ; z = -1.
b) Tính giá trị của biểu thức xy3 + 5xy3 + ( - 7xy3) tại
c) Tính giá trị của biểu thức tại x = 3, y = -1/2
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)