Phương trình tiếp tuyến của đồ thị ( C ) : y = x 3 + 2 x 2 tại điểm M(1;3) là:
A. y = 7x+4
B. y = 7x-4
C. y = -7x+4
D. y = -7x-4
Đề bài
Cho hàm số \(y = - 2{x^2} + x\) có đồ thị (C).
a) Xác định hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; - 6)
a, Hệ số góc của tiếp tuyến của đồ thị là:
\(y'\left(2\right)=-4\cdot2+1=-7\)
b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:
\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)
Viết phương trình tiếp tuyến của đồ thị (C):y=-1/3x^3+2x^2-1 tại điểm M có x=-2
\(y'=-x^2+4x\)
\(y'\left(-2\right)=-4-8=-12\)
\(y\left(-2\right)=\dfrac{29}{3}\)
Phương trình tiếp tuyến:
\(y=-12\left(x+2\right)+\dfrac{29}{3}\Leftrightarrow y=-12x-\dfrac{43}{3}\)
Cho hàm số: y = 2 x + 2 x - 1 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân.
A. y = -x-1; y = -x+6
B. y = -x-2; y = -x+7
C. y = -x-1; y = -x+5
D. y = -x-1; y = -x+7
- Hàm số đã cho xác định với ∀x ≠ 1.
- Ta có:
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):
- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 ) < 0 , nên có: y ' ( x 0 ) = - 1 .
- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.
Chọn D
Cho hàm số y = x 3 − x + 2 có đồ thị (C). Phương trình tiếp tuyến của đồ thị (C) tại điểm M(1;2) là
A. y = 2x -1
B. y = 2x + 1
C. y = 2x - 4
D. y = 2x
Đáp án D
y ' = 3 x 2 − 1 ⇒ y ' 1 = 3 .1 2 − 1 = 2
Phương trình tiếp tuyến của (C) tại điểm M(1;2) là: y = y ' 1 . x − 1 + 2 hay y = 2x.
Cho hàm số y = − x 3 + 2 x 2 + 2 có đồ thị (C). Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng y = x + 2.
A. y = x + 68 27 .
B. y = x + 2.
C. y = x + 50 27 .
D. y = x − 1 3 .
Đáp án C.
Ta có:
y ' = − 3 x 2 + 4 x ; y ' = 1 ⇔ − 3 x 2 + 4 x = 1 ⇔ x = 1 x = 1 3 .
Khi x = 1, tiếp tuyến có phương trình y = x + 2 trùng với đường thẳng y = x + 2.
Khi x = , tiếp tuyến có phương trình y = x + 50 27 .
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
Phương trình tiếp tuyến của đồ thị của hàm số y = x ( 3 - x ) 2 tại điểm có hoành độ x = 2 là
A. y = -3x+8
B. y = -3x+6
C. y = 3x-8
D. y = 3x-6
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm.
- Ta có:
- Vậy phương trình tiếp tuyến cần tìm là :
Chọn A
Phương trình tiếp tuyến của đồ thị của hàm số y = x ( 3 - x ) 2 tại điểm có hoành độ x = 2 là
A. y = -3x+8
B. y = -3x+6
C. y = 3x-8
D. y = 3x-6
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm.
- Ta có :
- Vậy phương trình tiếp tuyến cần tìm là
Chọn A.
Cho hàm số \(y=\dfrac{-1}{3x^2+x+2}\) có đồ thị (C). Viết phương trình tiếp tuyến biết:
a) Có hệ số góc bằng 1
b) Tiếp tuyến song song với Δ có phương trình \(y=-3x+2\)
c) Tiếp tuyến vuông góc với phương trình x+8y+1=0
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:
y = − x 3 + 3x + 1
b) Chỉ ra phép biến hình biến (C) thành đồ thị (C’) của hàmsố:
y = ( x + 1 ) 3 − 3x − 4
c) Dựa vào đồ thị (C’), biện luận theo m số nghiệm của phương trình:
( x + 1 ) 3 = 3x + m
d) Viết phương trình tiếp tuyến (d) của đồ thị (C’), biết tiếp tuyến đó vuông góc với đường thẳng
a)
b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.
y = f(x) = − ( x + 1 ) 3 + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3 + 3x + 4 (C1)
Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) = ( x + 1 ) 3 − 3x – 4
c) Ta có: ( x + 1 ) 3 = 3x + m (1)
⇔ ( x + 1 ) 3 − 3x – 4 = m – 4
Số nghiệm của phương trình (1) là số giao điểm của hai đường :
y = g(x) = ( x + 1 ) 3 − 3x – 4 (C’) và y = m – 4 (d1)
Từ đồ thị, ta suy ra:
+) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.
+) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.
+) 1 < m < 5 , phương trình (1) có ba nghiệm.
d) Vì (d) vuông góc với đường thẳng:
nên ta có hệ số góc bằng 9.
Ta có: g′(x) = 3 ( x + 1 ) 2 – 3
g′(x) = 9 ⇔
Có hai tiếp tuyến phải tìm là:
y – 1 = 9(x – 1) ⇔ y = 9x – 8;
y + 3 = 9(x + 3) ⇔ y = 9x + 24.