Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Ngọc Lan
Xem chi tiết
Le Thi Khanh Huyen
4 tháng 10 2016 lúc 17:15

a) Đặt \(f\left(x\right)=x^4+ax+b\text{⋮}x^2-4=\left(x+2\right)\left(x-2\right)\)

Áp dụng định lý Bê du có :

\(f\left(2\right)=f\left(-2\right)=0\)

\(\Rightarrow2^4+\left(-2\right).a+b=\left(-2\right)^4+2a+b\)

\(\Leftrightarrow a=0\)

Do đó \(\hept{\begin{cases}a=0\\b\in R\end{cases}}\)

Vậy ...

b) Mình không làm được :) Mình sẽ hỏi cô mình và trả lời cho bạn sau.

Hoàng Lê Bảo Ngọc
4 tháng 10 2016 lúc 17:38

a/ Đặt \(f\left(x\right)=x^4+ax+b=\left(x-2\right)\left(x+2\right).Q\left(x\right)\)với Q(x) là đa thức thương

Suy ra : \(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=16-2a+b=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2a+b=-16\\-2a+b=-16\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=-16\end{cases}}\)

b/ Ta có \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

Vậy \(x^2+ax+b\) sẽ có một trong hai dạng : \(x^2+ax+b=x^2+2x+2\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)

hoặc \(x^2+ax+b=x^2-2x+2\Rightarrow\hept{\begin{cases}a=-2\\b=2\end{cases}}\)

bella nguyen
Xem chi tiết
Lưu Hiền
25 tháng 10 2016 lúc 19:51

cái này đồng nhất hệ số đi nhá

Fuijsaka Ariko
Xem chi tiết
An Nguyễn Bá
29 tháng 10 2017 lúc 19:27

a) Ta có: \(x^2-x-2=0\)

\(\Leftrightarrow x^2+x-2x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Ap dung Be du ta co:

\(\left\{{}\begin{matrix}2^4-2^3-3.2^2+2a+b=2.2-3\\\left(-1\right)^4-\left(-1\right)^3-3.\left(-1\right)^2-a+b=2.\left(-1\right)-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\-a+b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)

Câu b tương tự rồi nhé

Lê Thị Thu Thủy
Xem chi tiết
.
9 tháng 5 2021 lúc 22:17

A = -2x4 + 7x - 3x2 - 2 và B = 3x2 - 5x + 2x4 - 4???

a, A(x) + B(x) = -2x4 + 7x - 3x2 - 2 + 3x2 - 5x + 2x4 - 4

= (2x4 - 2x4) + (3x2 - 3x2) + (7x - 5x) - (2 + 4)

= 2x - 6

A(x) - B(x) = -2x4 + 7x - 3x2 - 2 - 3x2 + 5x - 2x4 + 4

= (7x + 5x) - (2x4 + 2x4) - (3x2 + 3x2) + (4 - 2)

= -4x4 - 6x2 + 12x + 2

b, Cho A(x) + B(x) = 0

=> 2x - 6 = 0

=> 2x = 6

=> x = 3

Vậy A(x) + B(x) có nghiệm là x = 3.

Khách vãng lai đã xóa
kudo shinichi
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 7:32

a: A(4)=2014

A(-4)=64+2014=2078

B(-4)=4x8-4=28

B(4)=-4

b: \(f\left(x\right)=A\left(x\right)+B\left(x\right)-10\)

\(=\left(x-4\right)^2+2014+4\left|x-4\right|-4-10\)

\(=\left(x-4\right)^2+4\left|x-4\right|+2000\ge2000\)

Dấu '=' xảy ra khi x=4

Trần Thanh Sơn
Xem chi tiết
Qynh Nqa
Xem chi tiết
Trần Thu Phương
Xem chi tiết
Khang Lê Duy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 15:43

a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)

b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)

\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)