a) Ta có: \(x^2-x-2=0\)
\(\Leftrightarrow x^2+x-2x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Ap dung Be du ta co:
\(\left\{{}\begin{matrix}2^4-2^3-3.2^2+2a+b=2.2-3\\\left(-1\right)^4-\left(-1\right)^3-3.\left(-1\right)^2-a+b=2.\left(-1\right)-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=5\\-a+b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\)
Câu b tương tự rồi nhé