Cho pt:x2-x+m=0 hiệu của 2nghiệm =7 tìm 2nghiệm của pt
cho pt: \(x^2\text{-}\left(2m\text{+}1\right)x\text{+}m^2\text{+}m\text{=}0\)
tìm để pt có 2nghiệm x1, x2 thỏa mãn: hai nghiệm lớn hơn 1
\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2+m\right)\)
=4m^2+4m+1-4m^2-4m=1
=>PT luôn có hai nghiệm phân biệt
x1+x2>2 và x1x2>1
=>2m+1>2 và m^2+m>1
=>\(m>\dfrac{-1+\sqrt{5}}{2}\)
Giúp mk với mk gấp quá
Cho pt x^2 -2mx - 4m-5=0
a) tính tổng và tích của hai nghiệm theo m
b) gọi x1, x2 là 2nghiệm của pt. Tìm m để pt có gai nghiệm thỏa mãn x1^2 + x2^2 - x1x2 = 2x1+2x2 +27
Cho PT x2 - 4x -m2 +3 =0
a) C/m pt luôn có 2nghiệm phân biệt với mọi m
b) tìm giá trị của m để PT có 2 nghiệm x1;x2 thỏa mãn x2 = -5x2
bn chép nhầm đề ak...sao \(x_2=-5x_2\)
Bạn ơi, xem lại phần b đi: x2 = -5x2 à?
a) \(\Delta\)' = (-2)2 - (- m2 + 3) = 4 + m2 - 3 = m2 + 1
ta có m2 \(\ge\) 0 \(\forall\)m \(\Rightarrow\) m2 + 1 \(\ge\) 1 > 0 \(\forall\)m
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt \(\forall\)m
cho phương trình x2 -2mx+m2-4=0 tìm m để
a, pt có hai nghiệm phân biệt
b, pt có 2nghiệm x1,x2 thỏa mãn x2=2x1
c,pt có 2ngiệm x1,x2 thoa mãn 3x1+2x2=7
a) \(\Delta\)' = \(m^2-m^2+4=4>0\forall m\)
\(\Rightarrow\) pt có 2 nghiệm phân biệt \(\forall m\)
b) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1-x_2=0\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}3x_1=2m\\x_1+x_2=2m\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\\dfrac{2m}{3}+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=\dfrac{2m}{3}\\x_2=\dfrac{4m}{3}\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\dfrac{8m^2}{9}=m^2-4\)
\(\Leftrightarrow\) \(8m^2=9m^2-36\) \(\Leftrightarrow\) \(m^2=36\) \(\Leftrightarrow\) \(m=\pm6\)
vậy \(m=\pm6\) thỏa mảng đk bài toán
c) ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\3x_1+2x_2=7\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x_1+2x_2=4m\\3x_1+2x_2=7\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\7-4m+x_2=2m\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1=7-4m\\x_2=6m-7\end{matrix}\right.\)
ta có : \(x_1x_2=m^2-4\) \(\Leftrightarrow\) \(\left(7-4m\right)\left(6m-7\right)=m^2-4\)
\(\Leftrightarrow\) \(42m-49-24m^2+28m=m^2-4\)
\(\Leftrightarrow\) \(25m^2-70m+45=0\)
\(\Leftrightarrow\) \(5m^2-14m+9=0\)
giải phương trình ta có : \(\left\{{}\begin{matrix}x=\dfrac{9}{5}\\x=1\end{matrix}\right.\)
vậy : \(x=\dfrac{9}{5};x=1\) thỏa mãng đk bài toán
cho pt x2 -2(m+1)x+2m=0 (1) (với ẩn là x)
1)giải pt (1) khi m=1
2)chứng minh pt (1) luôn có 2nghiệm phân biệt với mọi m
3) gọi 2 nghiệm của pt (1) là x1 ;x2 .tìm giá trị của m để x1;x2 là độ dài 2 cạnh của 1 tam giác vuông có cạnh huyền bằng v12
1, khi m=1 phương trình trở thành:
x^2-4x+2=0
giải pt tìm đc x1= 2+v2, x2=2-v2
2, tính đc đenta' =m^2+1 luôn luôn lớn hơn 0
vậy.....
3, biện luận để giải pt có 2 nghiệm nguyên dương:
2m+2>0 và 2m>0
tương đương: m>0
theo gt có: x1^2+x^2=12
tương đương (x1+x2)^2-2x1x2=12
tưng đương 4(m+1)^2-4m=12
tương đương m^2+m-2 =0
giải pt được m=1(tm), m=-2( loại)
hok tốt
Cho PT: x2 + (m+2)x + m-1=0( m là tham số)
A) chứng minh PT luôn có 2nghiệm phân biệt với mọi m
B) gọi x1, x2 là hai nghiệm của PT. Tìm m để :
\(\frac{_{X1}}{X_2}+\frac{X_2}{x_1}=\frac{5}{2}\)
Tìm m để PT có 2nghiệm phân biệt x1 x2 thỏa mãn 1/x1 +1/x2 = 1/2(x1+x2 ). PT: 3x2 +4(m-1)x +m2 -4m +1
=0
Để pt có 2 nghiệm pb thì: \(\Delta'>0\Leftrightarrow\left(2m-2\right)^2-3m^2+12m-3>0\)
\(\Leftrightarrow m^2+4m+1>0\)
\(\Leftrightarrow[\begin{matrix}m>-2+\sqrt{3}\\m< -2-\sqrt{3}\end{matrix}\)
theo gt: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{2}\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1+x_2}{2}\)
\(\Rightarrow x_1x_2=2\) (1)
theo viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\left(m-1\right)\\x_1x_2=\dfrac{m^2-4m+1}{3}\end{matrix}\right.\) (2)
(1),(2)\(\Rightarrow\dfrac{m^2-4m+1}{3}=2\)
\(\Leftrightarrow m^2-4m+1=6\)
\(\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\)
kết hợp vs đk\(\Rightarrow m=5\)(t/m)
\(m=-1\)(ko t/m)
Vậy m=5 thì thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\left(x_1+x_2\right)\)
Cho pt\(ax^2+bx+c=0\) có 2nghiệm thỏa mãn \(0\le x_1\le x_2\le2\)tìm MAX\(\frac{2a^2-3ab+b^2}{2a^2-ab+ac}\)
Cho hai đa thứcP(x)=−x3+2x2+x−1vàQ(x)=x3−x2−x+2nghiệm của đa thứcP(x)+Q(x)là:
Lời giải:
$P(x)+Q(x)=-x^3+2x^2+x-1+x^3-x^2-x+2$
$=x^2+1\geq 0+1>0$ với mọi $x\in\mathbb{R}$
Do đó đa thức $P(x)+Q(x)$ vô nghiệm.