Tìm các số tự nhiên x thỏa mãn : \(\dfrac{13}{4}\) > x > \(\dfrac{5}{2}\)
Tìm số tự nhiên x thỏa mãn cả 2 BPT sau: 6 (1-x) + 4 (2-x) ≤ 3 ( 1-3x) và \(\dfrac{1-2x}{4}-2< \dfrac{-5x}{8}\)
6(1-x)+4(2-x)<=3(1-3x)
=>6-6x+8-4x<=3-9x
=>-10x+14<=-9x+3
=>-x<=-11
=>x>=11
(1-2x)/4-2<-5x/8
=>2-4x-16<-5x
=>-4x-14<-5x
=>x<14
Số tự nhiên x thỏa mãn cả hai BPT khi và chỉ khi 11<=x<14
=>\(x\in\left\{11;12;13\right\}\)
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
Tìm số tự nhiên x thỏa:
\(\dfrac{x!\left(4-x\right)!}{4!}-\dfrac{x!\left(5-x\right)!}{5!}=\dfrac{x!\left(6-x\right)!}{6!}\)
bài 7 tìm những giá trị nhuyên dương X thỏa mãn
3) \(\dfrac{-5}{11}\)<\(\dfrac{9}{x}\)<\(\dfrac{-5}{12}\)
4) \(\dfrac{-11}{13}\)<\(\dfrac{9}{x}\)<\(\dfrac{-11}{15}\)
5) \(\dfrac{-4}{5}\)<\(\dfrac{9}{x}\)<\(\dfrac{-4}{7}\)
nhanh cần gấp nhé
Tìm số nguyên x thỏa mãn
\(\dfrac{-9}{7}+\dfrac{5}{-7}< x\le\dfrac{-5}{2}+\dfrac{18}{4}\)
\(\dfrac{-9}{7}+\dfrac{5}{-7}< x\le\dfrac{-5}{2}+\dfrac{18}{4}\)
\(\dfrac{-9}{7}+\dfrac{-5}{7}< x\le\dfrac{10}{4}+\dfrac{18}{4}\)
\(\dfrac{-14}{7}< x\le2\)
\(-2< x\le2\)
\(\Rightarrow\)\(x=\left\{-1;0;1;2\right\}\)
Tìm các số x, y thỏa mãn \(\dfrac{x-y}{3}=\dfrac{y+2}{5}=\dfrac{x+y+1}{x-2}\)
Tìm số hạng chứa x5 trong khai triển \(\left(x-\dfrac{2}{x}\right)^{n^{ }}\) , biết n là số tự nhiên thỏa mãn \(C^3_n=\dfrac{4}{3}n+2C^2_n\)
A.144 B.134 C.115 D.141
bài 1 ( 2 điểm ):
a) tìm số tự nhiên X sao cho: \(4\dfrac{3}{5}\) + \(\dfrac{7}{10}\) < X < \(\dfrac{20}{3}\)
b) tìm X biết: X - \(2019\dfrac{2}{13}\) = \(3\dfrac{7}{26}\) + \(4\dfrac{7}{52}\)
bài 2: (1 điểm): tính
\(\dfrac{7,8\text{×}1,001\text{ }\text{×}0,625}{18,2\text{×}0,26\text{×}0,125}\)
bài 3 (2 điểm): tìm tất cả các số thập phân khác 0 thỏa mãn: số phần nguyên là số có 1 chữ số, phần thập phân chỉ gồm 2 chữ số giống nhau mà tổng của 2 chữ số đó bằng chữ số ở phần nguyên. Hãy tính tổng các chữ số vừa tìm được.
bài 4: 1 đoàn tàu hỏa dài 85 m qua cầu với vận tốc 54km/giờ. Từ lúc đầu tàu lên cầu đnế lúc toa cuối cùng qua khỏi cầu mất hết 1 phút 15 giây. Hỏi cầu dài bao nhiêu mét?
bài 5: một mảnh vườn hình thang có đáy bé là 36,45 m .Đáy lớn bằng 4/3 đáy bé, chiều cao bằng 2/3 tổng hai đáy. Tính diện tích mảnh vườn đó
bài 6:có bao nhiêu hình chữ nhật trong hình vẽ sau?
bài 7: (1 điểm):
a) điền số thích hợp vào dấu? và giải thích quy luật:
4, 5, 7, 11,19, ?, ? ....
trong hình vẽ dưới đây có 8 hình vuông nhỏ. Hỏi có bao nhiêu điểm A đến điểm C, men theo cạnh các hình vuông nhỏ, sao cho mỗi đường đều không qua đểm B và có độ dài gấp 6 lần độ dài cạnh hình vuông nhỏ.
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=5\) và x - y + z = 3 . Giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+y-2}{z+2}\) bằng
A. \(\dfrac{1}{2}\) B. \(0\) C. \(\dfrac{-36}{23}\) D. \(\dfrac{-13}{4}\)