tìm giá trị nhỏ nhất của k để bất phương trình :\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le k\)
có nghiệm thực
1, c/m vs x\(\ne\dfrac{k\pi}{2},k\in Z\)
\(\dfrac{1+\sin^4x-\cos^4x}{1-\sin^6x-\cos^6x}=\dfrac{2}{3cos^2x}\)
2, TÌM tất cả các gt của tham số ,để h/s sau có tập xđ D=R
y=\(\sqrt{mx^2-2\left(m+1\right)x+4}\\ \)
tính giá trị của mỗi biểu thức đại số sau tại x =1 ; y= -1và z = -2
a) 2xy(5x\(^2\)y + 3x -z )
b)xy\(^2\) + y\(^2\)z\(^3\) + z\(^3\)x\(^4\)
Bài 1: Cho a,b dương sao cho a+b=1. Chứng minh rằng: \(\frac{a^2}{a+2b}+\frac{b^2}{a+2b}\ge\frac{1}{3}\)
bài 2: Cho x,y là các số thực dương thỏa mãn x+y=2019. tìm giá trị nhỏ nhất của biểu thức P= \(\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}\)
bài 3: Cho x>0, y>0 là những số thay đổi thỏa mãn \(\frac{2018}{x}+\frac{2019}{y}=1\). tìm giá trị nhỏ nhất của biểu thức P= x+y
Cho a, b, c là 3 số thực thỏa mãn điều kiện \(a^3>36\) và \(abc=1\)
Xét tam thức bậc hai : \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}\)
a) Chứng minh rằng \(f\left(x\right)>0;\forall x\)
b) Từ câu a) suy ra \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)
Giải phương trình \(4x^2+12x\sqrt{x+1}=27\left(x+1\right)\) trên R, ta được nghiệm x = a \(x=\dfrac{b-c\sqrt{d}}{e}\) trong đó a, b, c, d, e là các số tự nhiên và \(\dfrac{b}{e}\) tối giản. Khi đó giá trị biểu thức: F = a+b-c+d-e
Tìm m để các hàm số sau có tập xác định là R (hay luôn xác định trên R):
a. \(y=f\left(x\right)=\dfrac{3x+1}{x^2+2\left(m-1\right)x+m^2+3m+5}\)
b. \(y=f\left(x\right)=\sqrt{x^2+2\left(m-1\right)x+m^2+m-6}\)
c. \(y=f\left(x\right)=\dfrac{3x+5}{\sqrt{x^2-2\left(m+3\right)x+m+9}}\)
bài 1: Rút gọn:
a) A= \(sin^2x+sin^2x.cot^2x\)
b) B= \(\left(1-tan^2x\right).cot^2x+1-cot^2x\)
c) C= \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)
d) D= \(\dfrac{1-cosx}{sin^2x}-\dfrac{1}{1+cosx}\)
e) E= \(cos^2\alpha.\left(sin^2\alpha+1\right)+sin^4\alpha\)
f) F= \(\dfrac{\sqrt{2}cos\alpha-2cos\left(\dfrac{\pi}{4}+2\right)}{-\sqrt{2}sin\alpha+2sin\left(\dfrac{\pi}{4}+2\right)}\)
g) G= \(\left(tana-tanb\right)cot\left(a-b\right)-tana.tanb\)
bài 2: cho các số dương a,b,c có a+b+c=3. Tìm giá trị nhỏ nhất của biểu thức
P= \(\dfrac{a\sqrt{a}}{\sqrt{2c+a+b}}+\dfrac{b\sqrt{b}}{\sqrt{2a+b+c}}+\dfrac{c\sqrt{c}}{\sqrt{2b+c+a}}\)
bài 3: cho a,b,c dương sao cho \(a^2+b^2+c^2=3\). Chứng minh rằng: \(\dfrac{a^3b^3}{c}+\dfrac{a^3c^3}{b}+\dfrac{b^3c^3}{a}\ge3abc\)
bài 4: cho các số thực dương a,b,c thỏa mãn a+b+c=3. Tìm giá trị nhỏ nhất cảu biểu thức :
P= \(\dfrac{1}{a}+\dfrac{1}{b}-c\)
bài 5: Cho a,b>0, \(3b+b\le1.\) Tìm giá trị nhỏ nhất của P= \(\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
Trong số các số bên phải của các đa thức sau, số nào là nghiệm của đa thức bên trái nó?
a) A(x)=2x-6 ; -3 0 3
b) B(x)=3x-6 ; \(\dfrac{-1}{6}\) \(\dfrac{-1}{3}\) \(\dfrac{1}{3}\) \(\dfrac{1}{6}\)
c) M(x)=x\(^2\)-3x +2 ; -2 -1 1 2
d) P(x)=x\(^2\)+5x-6 ; -6 -1 1 6
e) Q(x)=x\(^2\)+x ; -1 0 \(\dfrac{1}{2}\) 1