Biết rằng ∫ 0 π 4 sin 2 x . ln ( tan x + 1 ) d x = a π + bln 2 + c
với a, b, c là các số hữu tỉ. Tính T = 1 a + 1 b - c
A. T = 2
B T = 4
C. T=6
D. T = -4
Số nghiệm thuộc khoảng ( 0 ; π ) của phương trình. tan x + sin x + tan x - sin x = 3 tan x là
A. 0
B. 1
C. 2
D. 3
Sin(x-π/2)+cos(x-π)+tan(5π/2-x)+tan(x-π/2)=-2cosx
\(sin\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\pi\right)+tan\left(\dfrac{5\pi}{2}-x\right)+tan\left(x-\dfrac{\pi}{2}\right)\)
\(=-sin\left(\dfrac{\pi}{2}-x\right)+cos\left(\pi-x\right)+tan\left(2\pi+\dfrac{\pi}{2}-x\right)-tan\left(\dfrac{\pi}{2}-x\right)\)
\(=-cosx-cosx+tan\left(\dfrac{\pi}{2}-x\right)-cotx\)
\(=-2cosx+cotx-cotx=-2cosx\)
Nếu \(cot1,25.tan\left(4\text{ }Π+1,25\right)-sin\left(x+\frac{Π}{2}\right).cos\left(6Π-x\right)=0\) thì tanx bằng
\(cot1,25.tan\left(4\pi+1,25\right)-sin\left(x+\frac{\pi}{2}\right).cos\left(6\pi-x\right)=0\)
\(\Leftrightarrow cot1,25.tan1,25-cosx.cos\left(-x\right)=0\)
\(\Leftrightarrow1-cos^2x=0\)
\(\Leftrightarrow sin^2x=0\Rightarrow sinx=0\Rightarrow tanx=0\)
sin ( x + π 4 ) + sin ( x − π 4 ) = 0 thuộc khoảng (0;4π)
Tính:F=Cos(π/4+α) x cos(π/4-α)
G=Sin(π/3+α) x cos(π/3-α)
H=cos(π/2-α) x sin(π/2+α)
I=sin(π/4+α) - cos(π/4-α)
K=cos(π/6-x) - sin(π/3+x)
Biết rằng \(sin\left(x-\frac{\text{Π }}{2}\right)+sin\frac{13\text{Π }}{2}=sin\left(x+\frac{\text{Π }}{2}\right)\)
thì giá trị của cosx là bao nhiêu\(sin\left(x-\frac{\pi}{2}\right)+sin\frac{13\pi}{2}=sin\left(x+\frac{\pi}{2}\right)\)
\(\Leftrightarrow-cosx+1=cosx\)
\(\Leftrightarrow2cosx=1\Rightarrow cosx=\frac{1}{2}\)
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
Chứng minh đẳng thức lượng giác
câu 1) sin(\(\frac{\text{π}}{2}\)-α)cos(π-α) = \(\frac{-1}{1+tan^2\left(\text{π}-\text{α}\right)}\)
Câu 2) sin2 (\(\frac{\text{π}}{2}\)-α)= \(\frac{1}{1+tan^2}\)
Câu3) sin6\(\frac{x}{2}\) - cos6\(\frac{x}{2}\)=\(\frac{1}{4}\) cos x (sin2x -4)
Câu 4) \(\frac{1-sin^2x}{2cot\left(\frac{\text{π}}{4}+x\right).cot^2\left(\left(\frac{\text{π}}{4}-x\right)\right)}\)
Trong các khoảng sau, m thuộc khoảng nào để phương trình sin^2 x-(2m+1) sin x.cos x + 2m cos^2 x = 0 có nghiệm thuộc khoảng (π/4 ; π/3)?
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
Giải các phương trình sau. π 1. 2sin( x − ) − 2 = 0 . 4 2. sin 2 x − 2 3 sin 2 x − cos x + 3 sin x = 0 .
giúp em với adim
lớp 11