Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Phạm Huỳnh Hoài Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 22:30

5:

=>x^4-9x^2+x^2-9=0

=>x^2-9=0

=>x=3; x=-3

4: loading...

3: HS đồng biến khi x>0

=>5m+10>0

=>m>-2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2019 lúc 6:02

5x4 + 2x2 – 16 = 10 – x2

⇔ 5x4 + 2x2 – 16 – 10 + x2 = 0

⇔ 5x4 + 3x2 – 26 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 5t2 + 3t – 26 = 0 (2)

Giải (2) :

Có a = 5 ; b = 3 ; c = -26

⇒ Δ = 32 – 4.5.(-26) = 529 > 0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đối chiếu điều kiện chỉ có t1 = 2 thỏa mãn

+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2.

Vậy phương trình (1) có tập nghiệm S = {-√2; √2}

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 7 2017 lúc 12:24

Đặt m =  x 2  .Điều kiện m ≥ 0

Ta có:  x 4  -8 x 2 – 9 =0 ⇔  m 2  -8m -9 =0

Phương trình m 2  - 8m - 9 = 0 có hệ số a = 1,b = -8,c = -9 nên có dạng a – b + c = 0

suy ra:  m 1  = -1 (loại) ,  m 2  = -(-9)/1 =9

Ta có:  x 2  =9 ⇒ x= ± 3

Vậy phương trình đã cho có 2 nghiệm :  x 1  =3 ; x 2  =-3

Đỗ Quyên
Xem chi tiết
Lê Trang
15 tháng 3 2021 lúc 11:16

Bài 1:

a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)

\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)

\(=\sqrt{2}\)

b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2\)

Lê Trang
15 tháng 3 2021 lúc 11:41

Bài 2:

a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

b) ĐKXĐ: \(x\ne\pm2\)

Với \(x\ne\pm2\), ta có:

\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)

\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)

\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)

\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)

\(\Rightarrow x^2-4=8-x\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)

Vậy phương trình có tập nghiệm là: S ={3; -4}

Lê Trang
15 tháng 3 2021 lúc 12:05

Gọi số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: x(tấn). 0 < x <260

Số tấn than đã khai thác thực tế trong mỗi ngày là: x + 3 (tấn)

Số ngày mà đội thợ khai thác 260 tấn trong kế hoạch là: \(\dfrac{260}{x}\) (ngày)

Số ngày mà đội thợ khai thác 261 tấn thực tế là: \(\dfrac{261}{x+3}\) (ngày)

Vì trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày nên ta có phương trình:

\(\dfrac{261}{x+3}+1=\dfrac{260}{x}\)

\(\Leftrightarrow\dfrac{261+x+3}{x+3}=\dfrac{260}{x}\)

\(\Leftrightarrow\dfrac{264+x}{x+3}=\dfrac{260}{x}\)

\(\Rightarrow260\left(x+3\right)=x\left(264+x\right)\)

\(\Leftrightarrow260x+780=264x+x^2\)

\(\Leftrightarrow x^2+4x-780=0\)

\(\Leftrightarrow x^2-26x+30x-780=0\)

\(\Leftrightarrow x\left(x-26\right)+30\left(x-26\right)=0\)

\(\Leftrightarrow\left(x-26\right)\left(x+30\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-26=0\\x+30=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=26\left(TM\right)\\x=-30\left(loại\right)\end{matrix}\right.\)

Vậy số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: 26 tấn

Biện Văn Hùng
Xem chi tiết
Nguyễn Bùi Đại Hiệp
17 tháng 1 2016 lúc 17:05

khó hiểu vậy 

tick nhé

Biện Văn Hùng
17 tháng 1 2016 lúc 17:08

k biết mà đòi tick

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 10 2019 lúc 17:09

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ 0.

Quy đồng, khử mẫu ta được :

2x4 + x2 = 1 – 4x2

⇔ 2x4 + x2 + 4x2 – 1 = 0

⇔ 2x4 + 5x2 – 1 = 0 (1)

Đặt t = x2, điều kiện t > 0.

Khi đó (1) trở thành : 2t2 + 5t – 1 = 0 (2)

Giải (2) :

Có a = 2 ; b = 5 ; c = -1

⇒ Δ = 52 – 4.2.(-1) = 33 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đối chiếu với điều kiện thấy có nghiệm t1 thỏa mãn.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2017 lúc 15:50

x4 – 5x2 + 4 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 7 2019 lúc 4:20

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.