Cho phương trình chứa tham số m: x 2 + y 2 + z 2 - 2 m x - 4 y + 2 z + m 2 + 3 m = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình đó là phương trình mặt cầu
A. M ọ i m ∈ ℝ
B. m > 5 3
C. m ≤ 5 3
D. m < 5 3
Cho hệ phương trình: 2X +Y = 3m-2 ( m là tham số ) X - Y = 5 a) Giải hệ phương trình khi m = - 4 ; b) Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn: x + y = 13.
Câu 1:a, Cho x,y thoả mãn y(x+y)khác 0 và x^2-xy=2y^. Tính giá trị của biểu thức A= ( 1007x-y)/ (x+2012y)
b, Tìm đa thức f(x) biết f(x) chia cho x-a thì dư 3, f(x) chia cho x+1 thì dư 5, còn chia cho x^2-1 thì được thương là x^2+3 và còn dư.
câu 2: Cho phương trình (x+2)/(x-m)=(x+1)/(x-1) (m là tham số). tìm giá trị của m để phương trình trên vô nghiệm.
Câu 3:Cho các số thực dương x,y,z thoả mãn x+y+z=3, CMR: 1/(x^2+x)+1/(y^2+y)+1?(z^2+z)>=3/2
cho hệ phương trình {x+2y=2 , mx-y=m (m là tham số) a) giải hệ phương trình khi m=2 b) tìm m để hệ phương trình nhận cặp (x,y)=(2,-1) làm nghiệm
a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)
b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm
cho hệ phương trình: mx-y=2
2x+my=5(m là tham số)
a.giải hệ phương trình khi m=3
b. tìm m để hệ phuong trình có nghiệm duy nhất(x;y) thỏa mãn x+y=\(1-\dfrac{m^2}{m^2+2}\)
a: Khi m=3 thì hệ phương trình sẽ là:
\(\left\{{}\begin{matrix}3x-y=2\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-3y=6\\2x+3y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}11x=11\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3x-2=3-2=1\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}mx-y=2\\2x+my=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\2x+m\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+2\right)=5+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+5m}{m^2+2}-2=\dfrac{2m^2+5m-2m^2-4}{m^2+2}=\dfrac{5m-4}{m^2+2}\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\)
\(x+y=1-\dfrac{m^2}{m^2+2}\)
=>\(\dfrac{5m-4+2m+5}{m^2+2}=\dfrac{m^2+2-m^2}{m^2+2}=\dfrac{2}{m^2+2}\)
=>7m+1=2
=>7m=1
=>\(m=\dfrac{1}{7}\)
Câu 2 . Cho phương trình: x’ – 2(m-1)x – 2m+1=0 (m là tham số). a) Giải phương trình với m=4 b) Tìm các giá trị của m để phương trình có hai nghiệm x và y thỏa mãn 2x, +3x=-11 cứu tuii:((
a: Khi m=4 thì (1) sẽ là:
x^2-6x-7=0
=>x=7 hoặc x=-1
b: Sửa đề: 2x1+3x2=-11
x1+x2=2m-2
=>2x1+3x2=-11 và 2x1+2x2=4m-4
=>x2=-11-4m+4=-4m-7 và x1=2m-2+4m+7=6m+5
x1*x2=-2m+1
=>-24m^2-20m-42m-35+2m-1=0
=>-24m^2-60m-34=0
=>\(m=\dfrac{-15\pm\sqrt{21}}{12}\)
Cho hệ phương trình:\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\)(m là tham số)
1.Giải hệ phương trình với m=1
2.Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn đẳng thức \(x^2+2y^2=2\)
Linh tinh đếyyy ạ. Có gì sai thông cảm nhaaaa
Cho hệ phương trình: mx + 4y = 10 - m và x + my = 4 (m là tham số)
tìm m để hệ có nghiệm duy nhất (x;y) sao cho S = x^2 - y^2 đat Min
\(\hept{\begin{cases}mx+4y=10-m\left(1\right)\\x+my=4\left(2\right)\end{cases}}\)
từ (2) ta có \(x=4-my\) (3)
thay (3) vào (1) ta có \(m\left(4-my\right)+4y=10-m\)
\(\Leftrightarrow4m-m^2y+4y=10-m\)
\(\Leftrightarrow y\left(4-m^2\right)=10-m-4m\)
\(\Leftrightarrow y\left(4-m^2\right)=10-5m\) \(\left(4\right)\)
để hpt có nghiệm duy nhất thì pt (4) pải có nghiệm duy nhất
\(\Leftrightarrow4-m^2\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
từ (4) ta có \(y=\frac{10-5m}{4-m^2}\)
\(y=\frac{5m-10}{m^2-4}\)
\(y=\frac{5\left(m-2\right)}{\left(m+2\right)\left(m-2\right)}\)
\(y=\frac{5}{m+2}\)
từ (3) ta có \(x=4-\frac{5m}{m+2}\)
\(x=\frac{4m+8-5m}{m+2}\)
\(x=\frac{8-m}{m+2}\)
theo bài ra \(S=x^2-y^2\)
\(S=\left(\frac{8-m}{m+2}\right)^2-\left(\frac{5}{m+2}\right)^2\)
\(S=\left(\frac{8-m-5}{m+2-m-2}\right)\left(\frac{8-m+5}{m+2+m+2}\right)\)
\(S=\left(3-m\right)\left(\frac{13-m}{2m+4}\right)\)
\(S=\frac{\left(3-m\right)\left(13-m\right)}{2m+4}\)
\(S=\frac{39-3m-13m+m^2}{2m+4}\)
\(S=\frac{m^2-16m+39}{2m+4}\)
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+y=m^2+3\\x-y=-4\end{matrix}\right.\)(m là tham số). CMR: Với mọi \(m\ne-1\), hệ phương trình có nghiệm duy nhất (x;y). Khi đó tìm giá trị nhỏ nhất của biểu thức: \(Q=x^2-2y+10\)
\(\text{Với }m\ne-1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}mx+y=m^2+3\\y=x+4\end{matrix}\right.\\ \Leftrightarrow mx+x+4=m^2+3\\ \Leftrightarrow x\left(m+1\right)=m^2-1\\ \Leftrightarrow x=\dfrac{\left(m-1\right)\left(m+1\right)}{m+1}=m-1\\ \Leftrightarrow y=x+4=m+3\)
\(\Leftrightarrow\left(x;y\right)=\left(m-1;m+3\right)\left(đpcm\right)\)
\(\Leftrightarrow Q=x^2-2y+10\\ \Leftrightarrow Q=\left(m-1\right)^2-2\left(m+3\right)+10\\ \Leftrightarrow Q=m^2-2m+1-2m-6+10\\ \Leftrightarrow Q=m^2-4m+5=\left(m-2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow m=2\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy \(Q_{min}=1\)
cho hệ phương trình x+my=3m
mx-y=m2-2 ( m là tham số)
a. giải phương trình với m=-1
b. tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn (x-1)(m-y),0
a: Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)
cho hệ phương trình mx-y=2
3x+my=5( m là tham số)
xác định các giá trị của tham số m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x+y=3/m2+3
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-3\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\cdot\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{2m^2+5m}{m^2+3}-2=\dfrac{2m^2+5m-2m^2-6}{m^2+3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)
\(x+y=\dfrac{3}{m^2+3}\)
=>\(\dfrac{2m+5+5m-6}{m^2+3}=\dfrac{3}{m^2+3}\)
=>\(7m-1=3\)
=>7m=4
=>m=4/7(nhận)