Tập tất cả các giá trị của m để phương trình x 2 + 1 4 - x = m có nghiệm là
A. ( - ∞ ; 0 ]
B. ( 1 ; + ∞ )
C. ( 0 ; 1 ]
D. ( 0 ; 1 )
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình 9 1 - x + 2 ( m - 1 ) 3 1 - x + 1 = 0 có 2 nghiệm phân biệt.
A. m > 1
B. m < -1
C. m < 0
D. -1 < m < 0
Tìm tập tất cả các giá trị của tham số m để phương trình \(3\left(\text{|x-1| +2-m}\right)=\text{|x - 1| + m - 5}\)
có nghiệm là:
\(\Leftrightarrow3\left|x-1\right|+6-3m=\left|x-1\right|+m-5\)
\(\Leftrightarrow2\left|x-1\right|=4m-11\)
Do \(2\left|x-1\right|\ge0\) với mọi x nên pt có nghiệm khi:
\(4m-11\ge0\Rightarrow m\ge\dfrac{11}{4}\)
Tập hợp tất cả các giá trị của tham số m để phương trình 1 + x + 1 − x + 4 1 − x 2 = m có nghiệm là:
A. 2 ; + ∞
B. 6 ; + ∞
C. 2 , 6
D. 2 , 2 2
1 + x + 1 − x + 4 1 − x 2 = m 1
Điều kiện: − 1 ≤ x ≤ 1
Đặt t = 1 + x + 1 − x ≥ 0 ⇒ t 2 = 2 + 2 1 − x 2
Do 2 ≤ t 2 ≤ 4 nên t ∈ 2 ; 2
Trở thành t + 2 t 2 − 2 = m ⇔ 2 t 2 + t − 4 + m = 0 ( 2 )
Để (1) có nghiệm thì (2) có nghiệm t ∈ 2 ; 2
Tức là: Δ = 1 + 4.2 4 + m = 8 m + 33 ≥ 0 2 ≤ − 1 − 8 m + 33 4 ≤ 2 2 ≤ − 1 + 8 m + 33 4 ≤ 2 ⇔ m ≥ − 33 8 4 2 + 1 ≤ 8 m + 33 ≤ 9
⇔ m ≥ − 33 8 2 ≤ m ≤ 6 ⇔ 2 ≤ m ≤ 6
Vậy m ∈ 2 ; 6 thì phương trình đã cho có nghiệm
Đáp án cần chọn là: C
Tập tất cả các giá trị của tham số m để phương trình 3 x + 2 - m = x + m - 5 có nghiệm là
A. [ 11 7 ; + ∞ )
B. - ∞ ; 11 4
C. 11 4 ; + ∞
D. [ 11 4 ; + ∞ )
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2(x4 - 1) + m(x2 - 1) - 6(x - 1) ≥ 0 đúng với mọi x ∈ R. Tổng giá trị của tất cả các phần tử thuộc S bằng bao nhiêu ?
Lời giải:
$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$
Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ
$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$
$\Rightarrow h(1)=0$
$\Leftrightarrow 4m^2+2m-6=0$
$\Leftrightarrow 2m^2+m-3=0$
$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$
Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$
Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$
Tìm tập hợp tất cả các giá trị của tham số m để phương trình x 3 + x 2 + x = m ( x 2 + 1 ) 2 có nghiệm thuộc đoạn [0;1]?
A . m ≥ 1
B . m ≤ 1
C . 0 ≤ m ≤ 1
D . 0 ≤ m ≤ 3 4
ĐỀ THI HỌC KỲ I
Câu 1 : giải phương trình ln (3x2 - 2x +1) = ln ( 4x - 1)
Câu 2 : Tìm tập hợp các giá trị của tham số m để phương trình 3x + 3 = m \(\sqrt{9^x+1}\) có đúng 1 nghiệm
Câu 3 : Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = -x3 + 3mx + 1 có 2 điểm cực trị A , B sao cho tam giác OAB vuông tại O ( với O là gốc tọa độ )
Câu 1: Gọi M là tập hợp tất cả các giá trị nguyên của tham số m để phương trình \(-x^2+\left(2m-3\right)x-m^2+m+20=0\) có hai nhgieemj trái dấu. Tổng tất cả các phần tử của M bằng
A. 5 B. 4 C. 10 D. 15
Câu 2: Có tất cả bao nhiêu giá trị nguyên của tham số m nhỏ hơn 2022 để bất phương trình \(x^2-8x+m+20\ge0\) nghiệm đúng với mọi x ϵ [5; 10]?
A. 2027 B. 2028 C. 2062 D. 2063
Tìm tập hợp tất cả các giá trị của tham số m để phương trình l o g 2 x - l o g 2 ( x - 2 ) = m có nghiệm
A. 1 ≤ m < + ∞
B. 1 < m < + ∞
C. 0 ≤ m < + ∞
D. 0 < m < + ∞
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3