1 + x + 1 − x + 4 1 − x 2 = m 1
Điều kiện: − 1 ≤ x ≤ 1
Đặt t = 1 + x + 1 − x ≥ 0 ⇒ t 2 = 2 + 2 1 − x 2
Do 2 ≤ t 2 ≤ 4 nên t ∈ 2 ; 2
Trở thành t + 2 t 2 − 2 = m ⇔ 2 t 2 + t − 4 + m = 0 ( 2 )
Để (1) có nghiệm thì (2) có nghiệm t ∈ 2 ; 2
Tức là: Δ = 1 + 4.2 4 + m = 8 m + 33 ≥ 0 2 ≤ − 1 − 8 m + 33 4 ≤ 2 2 ≤ − 1 + 8 m + 33 4 ≤ 2 ⇔ m ≥ − 33 8 4 2 + 1 ≤ 8 m + 33 ≤ 9
⇔ m ≥ − 33 8 2 ≤ m ≤ 6 ⇔ 2 ≤ m ≤ 6
Vậy m ∈ 2 ; 6 thì phương trình đã cho có nghiệm
Đáp án cần chọn là: C