Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Nhật
Xem chi tiết
Hoàng Hưng Đạo
Xem chi tiết
Nguyễn An
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 23:28

Lời giải:

$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$

Nếu đây là scp thì $n^2+n+1$ cũng phải là scp

Đặt $n^2+n+1=t^2$ với $t$ tự nhiên 

$\Leftrightarrow 4n^2+4n+4=(2t)^2$

$\Leftrightarrow (2n+1)^2+3=(2t)^2$

$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$

$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$

$\Rightarrow n=0$ (trái giả thiết)

Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$

$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$

Ta có đpcm.

Minz Ank
Xem chi tiết
blua
29 tháng 6 2023 lúc 11:53

+)Đặt A = n4+8n3+17n2+4n+6
    =>  A= (n2+4n)2+(n+2)2+2>0
    =>  A> (n2+4n)2 
+)Xét với n = 0 => A= 6 (không thỏa mãn)
Xét hiệu B=(n2+4n+1)2-A
                =n4+16n2+1+8n3+2n2+8n-n4-8n3-17n2-4n-6
                =n2+4n-5
                =(n+2)2-9
TH1:B≤0 <=> -5≤n≤1 hay n∈{-5,-4,-3,-2,-1,1} vì n khác 0(cmt)
ta có A=(n2+4n)2+(n+2)2+2= n2(n+4)2+(n+2)2+2
Vì A là số chính phương nên A≡ 0,1(mod4)và A≡0,1,4(mod 5)
Ta xét với n≡0 (mod 4)=> A≡0+4+2≡2 (mod4) => loại
                 n≡ 1 (mod 4)=> A≡ 25+ 9+2≡0 (mod4) => chọn
 cmtt với n≡3(mod 4)=>A≡0(mod 4)=> chọn
               n≡ 2(mod 4) => A≡2(mod4) => loại
Ta xét tiếp với mod 5 với n≡ 0,1,2,3,4 thì chỉ có n≡ 0,1 thỏa mãn
=> n ∈{-5,1}
Từ đây ta thay với n= -5 hay 1 thì (n+2)2-9=0
=>B=0 và A=(n2+4n+1)2
=> n∈{1,-5}
TH2: B>0=> (n2+4n)<A<(n2+4n+1)2
              => không tồn tại số chính phương A
Vậy để n4 + 8n3 + 17n2 + 4n + 6 là số chính phương thì n∈{1,-5}

Phạm Ý Linh
Xem chi tiết
Phạm Quang Lộc
30 tháng 1 2022 lúc 18:16

hello

Kim Nhung
Xem chi tiết
Nguyễn Hoàng Pháp Quang
16 tháng 3 2023 lúc 22:00

Lỡ có sai sót thì thông cảm giúp mình nha:3

物理疾驰
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Yeutoanhoc
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Nguyễn Đức Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 19:55

A nguyên thì 3n^2-12+21 chia hết cho n-2

=>\(n-2\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
3 tháng 8 2023 lúc 9:11

\(B=n^2-2.n.\dfrac{1}{2}+\dfrac{1}{4}+12,25=\)

\(=\left(n-\dfrac{1}{2}\right)^2+12,25\ge12,25\)

B là số chính phương

\(\Rightarrow n^2-n+13=p^2\) 

\(\Leftrightarrow4n^2-4n+52=4p^2\)

\(\Leftrightarrow\left(2n-1\right)^2+51=4p^2\)

\(\Leftrightarrow4p^2-\left(2n-1\right)^2=51\)

\(\Leftrightarrow\left(2p-2n+1\right)\left(2p+2n-1\right)=51\)

\(\Rightarrow\left(2p-2n+1\right)\) và \(\left(2p+2n-1\right)\) phải là ước của 51

\(=\left\{-51;-17;-3-1;1;3;17;51\right\}\)

Ta có các trường hợp

\(\left\{{}\begin{matrix}2p-2n+1=-51\\2p+2n-1=-1\end{matrix}\right.\) giải hệ để tìm n

Tương tự với các trường hợp khác

 

 

 

 

Khiêm Nguyễn Gia
3 tháng 8 2023 lúc 10:55
\(2p-2n+1\) \(51\) \(1\) \(-51\) \(-1\) \(17\) \(3\) \(-17\) \(-3\)
\(2p+2n-1\) \(1\) \(51\) \(-1\) \(-51\) \(3\) \(17\) \(-3\) \(-17\)
\(p\) \(13\) \(13\) \(-13\) \(-13\) \(5\) \(5\) \(-5\) \(-5\)
\(n\) \(-12\) \(13\) \(13\) \(-12\) \(-3\) \(4\) \(4\) \(-3\)

 

ppp
Xem chi tiết
Nguyễn Trương Nam
11 tháng 4 2017 lúc 10:45

Đặt \(n^2+n+1=k^2\left(k\in Z^+\right)\)

\(\Leftrightarrow4n^2+4n+4=4k^2\)

\(\Leftrightarrow4k^2=4n^2+4n+1+3\)

\(\Leftrightarrow4k^2-\left(2n+1\right)^2=3\)

\(\Leftrightarrow\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

Vì \(n,k\in Z\Rightarrow2k-2n-1,2k+2n+1\inƯ\left(3\right)\)

*lập bảng

2k-2n-1-3-113
2k+2n+1-1-331
2k-2n-2024
2k+2n-2-420
k-1-111
n0-10-1

Vậy \(n\in\){-1; 0} thì n2+n+1 là số cp

Lai Duy Dat
11 tháng 8 2018 lúc 20:26

tìm n nguyên dg mà bạn