Chu kì của hàm số y = cosx/2+sinx là:
A. 0
B. 2π
C. 4π
D. 6π
Chứng minh các hàm số sau tuần hoàn, tìm chu kì T:
\(a,y=\left|sinx\right|\)
\(b,y=cosx+sinx\)
\(c,sin3x\)
\(d,y=\left|cosx\right|\)
Tổng các nghiệm thuộc đoạn [0; 3π] của phương trình 1 - 2 cos^2 x - sin x = 0 là
A. 5/3π. B. 4π. C. 6π. D. 7/2π .
\(1-2cos^2x-sinx=0\)
\(\Leftrightarrow1-2\left(1-sin^2x\right)-sinx=0\)
\(\Leftrightarrow2sin^2x-sinx-1=0\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\dfrac{\pi}{2};\dfrac{7\pi}{6};\dfrac{11\pi}{6};\dfrac{5\pi}{2}\right\}\)
\(\Rightarrow\sum x=6\pi\)
Cho các mệnh đề sau
(I) Hàm số f x = sin x x 2 + 1 là hàm số chẵn.
(II) Hàm số f x = 3 sin x + 4 cos x có giá trị lớn nhất là 5.
(III) Hàm số f x = tan x tuần hoàn với chu kì 2 π .
(IV) Hàm số f x = cos x đồng biến trên khoảng 0 ; π .
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng?
A. 4.
B. 2.
C. 3.
D. 1.
Đồ thị của các hàm số y=sinx và y=cosx cắt nhau tại bao nhiêu điểm có hoành độ thuộc đoạn [−2π;`(5π)/2`]
?
A. 5 B. 6 C. 4 D. 7
Khẳng định nào sau đây là sai?
A. Hàm số y=cosx
có tập xác định là R
B. Hàm số y=cosx
có tập giá trị là [-1;1]
C. Hàm số y=cosx
là hàm số lẻ
D. Hàm số y=cosx tuần hoàn với chu kỳ 2π
Cho biết chu kì của mỗi hàm số y = sin x , y = cos x , y = tan x , y = c o t x .
a. Hàm số y = sinx và y = cosx là hàm số tuần hoàn có chu kì là 2 π.
b. Hàm số y = tanx và y = cotx là các hàm số tuần hoàn có chu kì là π.
Hàm số y = sinx đồng biến trên đoạn nào dưới đây ?
A . [ π ; 2π ]
B . [-π ; π ]
C . [ 0 ; π ]
D . [ 0 ; \(\dfrac{\pi}{2}\)]
????????????????????
Cho hàm số: y = ex cosx Khi đó: y'/ex?
A. cosx - sinx
B. sinx - cosx
C. sinx + cosx
D. cosx
\(y'=\left(e^x\right)'.cosx+e^x.\left(cosx\right)'=e^x\left(cosx-sinx\right)\)
=> Chọn A
Trên đoạn − 2 π ; 5 π 2 , đồ thị hai hàm số y = s inx và y = cos x cắt nhau tại bao nhiêu điểm?
A.2
B.4
C.3
D.5
Đáp án là D.
Xét phương trình hoành độ giao điểm sin x = cos x ⇔ sin x − cos x = 0 ∗
Số giao điểm của hai đồ thị hàm số chính là số nghiệm của phương trình (*) trên − 2 π ; 5 π 2 .
Khi đó ta có sin x − cos x = 0 ⇔ 2 sin x − π 4 = 0 ⇔ x = π 4 + k π , k ∈ ℤ .
Mà x ∈ − 2 π ; 5 π 2 nên ta có − 2 π ≤ π 4 + k π ≤ 5 π 2 − 2 π ≤ π 4 + k π ≤ 5 π 2 .
Hay ta có k ∈ − 2 ; − 1 ; 0 ; 1 ; 2 .