Có thể vẽ được mấy tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài như sau: 1cm, 2cm, 3cm, 4cm và 5cm?
Có thể vẽ được mấy tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài 1cm, 2cm, 3cm, 4cm, 5cm.
Ta có: 1 = 3 - 2 = 4 - 3 = 5 - 4
Suy ra: trong 3 cạnh của tam giác không có cạnh nào có độ dài 1cm.
* Nếu cạnh nhỏ nhất là 2cm
Ta có: 4 - 3 < 2 < 4 + 3; 5 - 4 < 2 < 5 + 4
Suy ra: hai cạnh kia là 3cm và 4cm hoặc 4cm và 5cm
* Nếu cạnh nhỏ nhất là 3cm
Ta có: 5 - 4 < 3 < 5 + 4; 3 = 5 - 2; 3 > 4 - 2
Như vậy hai cạnh kia là 5cm và 4cm
* Không có trường hợp cạnh nhỏ nhất là 4cm
Vậy có thể vẽ được ba tam giác với độ dài các cạnh là:
2cm; 3cm; 4cm
2cm; 4cm; 5cm
3cm; 4cm; 5cm
có thể vẽ được tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài 1cm, 2cm, 3cm, 4cm,5cm
Có thể vẽ được mấy tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài 1cm, 2cm, 3cm, 5cm ?
Có năm đoạn thẳng có độ dài lần lượt là 1 c m , 2 c m , 3 c m , 4 c m , 5 c m . Lấy ngẫu nhiên ra ba đoạn thẳng, tính xác suất để ba đoạn thẳng được chọn ra là độ dài ba cạnh của một tam giác
A. 1 10 .
B. 3 10 .
C. 2 5 .
D. 3 5 .
Câu 44. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau
A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cm
C. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ; 6cm
Có thể vẽ được mấy tam giác (phân biệt) với ba cạnh là ba trong năm đoạn thẳng có độ dài như sau : 1 cm, 2 cm, 3 cm, 4 cm và 5 cm ?
Để tạo được một tam giác thì độ dài ba cạnh phải thoả mãn bất đẳng thức tam giác đó là tổng độ dài hai cạnh bất kỳ phải lớn hơn cạnh còn lại.
Vì vậy chỉ có bộ ba độ dài sau thoả mãn (2,3,4); (2,4,5); (3,4,5).
(Lưu ý: để xét cho nhanh, các bạn áp dụng phần Lưu ý (trang 63 sgk Toán 7 Tập 2)), tức là ta so sánh độ dài lớn nhất với tổng hai cạnh hoặc so sánh độ dài nhỏ nhất với hiệu hai cạnh.
Ví dụ với cặp 3 độ dài (1, 2, 3) không là ba cạnh vì:
- bất đẳng thức 3 > 2 + 1 sai
- hoặc bất đẳng thức 3 - 2 < 1 sai)
Trong một tam giác, độ dài một cạnh lớn hơn hiệu và nhỏ hơn tổng của hai cạnh còn lại. Vậy nên với năm đoạn thẳng có độ dài 1cm, 2cm, 3cm, 4cm, 5cm chỉ dựng được tam giác với ba cạnh là các đoạn thẳng có độ dài là các bộ ba 2cm, 3cm, 4cm, bộ ba 3cm, 4cm, 5cm, bộ ba 2cm, 4cm, 5cm.
Để tạo được một tam giác thì độ dài ba cạnh phải thoả mãn bất đẳng thức tam giác đó là tổng độ dài hai cạnh bất kỳ phải lớn hơn cạnh còn lại.
Vì vậy chỉ có bộ ba độ dài sau thoả mãn (2,3,4); (2,4,5); (3,4,5).
(Lưu ý: để xét cho nhanh, các bạn áp dụng phần Lưu ý (trang 63 sgk Toán 7 Tập 2)), tức là ta so sánh độ dài lớn nhất với tổng hai cạnh hoặc so sánh độ dài nhỏ nhất với hiệu hai cạnh.
Ví dụ với cặp 3 độ dài (1, 2, 3) không là ba cạnh vì:
- bất đẳng thức 3 > 2 + 1 sai
- hoặc bất đẳng thức 3 - 2 < 1 sai)
Cho các bộ ba đoạn thẳng có độ dài như sau:
a) 2cm; 3cm; 4cm
b) 1cm; 2cm; 3,5cm
c) 2,2cm; 2cm; 4,2cm
Hãy vẽ tam giác có độ dài ba cạnh lần lượt là một trong các bộ ba ở trên (nếu vẽ được). Trong trường hợp không vẽ được, hãy giải thích.
a) Với 3 độ dài 2cm, 3cm, 4cm lập thành 3 cạnh của Δ.
b) 1cm; 2cm; 3,5cm không lập thành 3 cạnh của Δ vì 2 – 1 < 3,5 < 2 + 1 BĐT sai
c) 2,2 + 2 = 4,2 không lập thành Δ
Có năm đoạn thẳng có độ dài lần lượt là 1cm, 2c, 3cm, 4cm, 5cm. Lấy ngẫu nhiên ra ba đoạn thẳng, tính xác suất để ba đoạn thẳng được chọn ra là độ dài ba cạnh của một tam giác.
Bài 2 bộ ba độ dài nào sau đây có thể là độ dài ba cạnh của một tam giác a)4cm,2cm,6cm b)4cm,3cm,6cm C)4cm,1cm,6cm d)3cm,4cm,5cm
Để lập thành 3 cạnh của tam giác thì phải thỏa mãn bất đẳng thức tam giác: \(\left|a-b\right|< c< a+b\)
Kiểm tra các đáp án ta thấy b và d thỏa mãn