Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thị Ngân Đồng
Xem chi tiết
Rhider
26 tháng 1 2022 lúc 21:46

Xét ΔAMB và ΔAMC, ta có:

AB = AC (gt)

BM = CM (vì M là trung điểm BC)

 

AM cạnh chung

Suy ra: ΔAMB= ΔAMC(c.c.c)

⇒ ∠(AMB) =∠(AMC) ̂(hai góc tương ứng)

Ta có: ∠(AMB) +∠(AMC) =180o (hai góc kề bù)

∠(AMB) =∠(AMC) =90o. Vậy AM ⏊ BC

undefined

Nguyễn Lê Phước Thịnh
26 tháng 1 2022 lúc 21:46

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nen AM là đường cao

Nguyễn Chi
Xem chi tiết
Lê Xuân Hùng
6 tháng 1 2022 lúc 16:20

a) Xét `ΔABM` và `ΔACN` có:

         `\hat{AMB}=\hat{ANC}=90^o`

         `AB=AC(g t)`

          `\hat{A}:chung`

`⇒ ΔABM=ΔΔACN(CH-GN)`

`=> AM=AN` (2 cạnh tương ứng)

b) Xét `ΔAHN` và `ΔAHM` có:

          `AN=AM(cmt)`

          `\hat{ANH}=\hat{AMH}=90^o`

          `AH:chung`

`=> ΔAHN=ΔAHM(CH-CGV)`

`=> \hat{NAH}=\hat{MAH}` (2 góc tương ứng)

`=> AH` là tia phân giác của `\hat{NAM}` (hay `\hat{BAC}`) (1)

Xét `ΔABK` và `ΔACK` có:

      `AB=AC(g t)`

      `AK:chung`

      `BK=KC` (K là trung điểm của BC)

`=> ΔABK=ΔACK(c.c.c)`

`=> \hat{BAK}=\hat{CAK}` (2 góc tương ứng)

`=> AK` là tia phân giác của `\hat{BAC}` (2)

Từ (1) và (2) `=>` 3 điểm `A,H,K` thẳng hàng

nguồn: copy

Trần Đại Hào
Xem chi tiết
Trí Tiên亗
16 tháng 8 2020 lúc 15:36

a) Xét \(\Delta ABC\)

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABC\)cân tại A

\(\Rightarrow\widehat{B}=\widehat{C}\)

b) Vì M là trung điểm của BC 

=> AM là đường trung tuyến của \(\Delta ABC\)

Trong tam giác cân đường trung tuyến cũng là đường cao

\(\Rightarrow AM\perp BC\)

Khách vãng lai đã xóa
Greninja
16 tháng 8 2020 lúc 15:42

                                           A B M C 1 2

a) Xét \(\Delta ABC\)có : AB = BC ( gt )

\(\Rightarrow\Delta ABC\)cân tại A

\(\Rightarrow\widehat{B}=\widehat{C}\)

b) Xét \(\Delta ABM\)và \(\Delta ACM\)có :

                     \(AB=AC\left(gt\right)\)

                    \(BM=MC\)( M là trung điểm của BC )

                     AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{M_1}=\widehat{M_2}\)( 2 góc tương ứng )

mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( kề bù )

\(\Rightarrow\widehat{M_1}=90^o\)

\(\Rightarrow AM\perp BC\)

              

Khách vãng lai đã xóa
Tái Hiện Cổ Tích
Xem chi tiết
Trần Dương
Xem chi tiết
mokona
6 tháng 2 2016 lúc 15:06

vẽ hình nha bạn

Đợi anh khô nước mắt
6 tháng 2 2016 lúc 15:07

ghi từng bài thui

Đỗ Thụy Cát Tường
Xem chi tiết
Nguyễn Phương Linh
11 tháng 12 2020 lúc 12:06

HOI KHO ^.^

Khách vãng lai đã xóa
Nguyễn Minh Dương
17 tháng 11 2021 lúc 20:36

Khó quá

 

Học giỏi
28 tháng 12 2021 lúc 13:19

Căng

Nhan Quốc Thái Stt 29
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2021 lúc 20:53

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Akai Haruma
15 tháng 11 2021 lúc 22:00

Lời giải:

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ 

$BM=CM=\frac{BC}{2}$

$AM$ chung

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

$\Rightarrow \widehat{AMB}=\widehat{AMC}$

Mà $\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0$

$\Rightarrow \widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0$

$\Rightarrow AM\perp BC$.

Akai Haruma
15 tháng 11 2021 lúc 22:02

Hình vẽ:

Lương Trung Hiếu
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
19 tháng 5 2017 lúc 11:01

A B C H D M
Tam giác ABC cân tại A, H là trung điểm của BC nên \(AH\perp BC\).
\(\overrightarrow{AM}.\overrightarrow{BD}=\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{AD}\right)\left(\overrightarrow{BH}+\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{BH}+\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}+\overrightarrow{AD}.\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}\right)\) (do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{AH}.\left(\overrightarrow{BH}+\overrightarrow{HD}\right)+\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{HD}\right).\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\) ( do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{BH}\right)\)
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{HC}\right)\) ( doM là trung điểm của BC).
\(=\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{AC}\)
\(=0\) (Do \(HD\perp AC\) )