Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoang gia kieu
Xem chi tiết
zZz Cool Kid_new zZz
22 tháng 7 2019 lúc 20:52

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

zZz Cool Kid_new zZz
22 tháng 7 2019 lúc 20:58

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

Phạm Ninh Đan
Xem chi tiết
hoa ban
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
Phạm Xuân Sơn
Xem chi tiết
coolkid
2 tháng 12 2019 lúc 17:47

Ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(.............\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Khi đó:

\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)

\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)

\(=10\)

Khách vãng lai đã xóa
coolkid
2 tháng 12 2019 lúc 17:49

Có BĐT sau:

\(\sqrt{\left(n-1\right)\left(n+1\right)}< n\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)< n^2\)

\(\Leftrightarrow n^2-1< n^2\)

\(\Leftrightarrow-1< 0\left(true!!\right)\)

Áp dụng vào ta có:

\(\sqrt{2019\cdot2021}< 2020\Rightarrowđpcm\)

Khách vãng lai đã xóa
coolkid
2 tháng 12 2019 lúc 17:54

Chắc lớp 7 chưa học biến đổi tương đương nên làm lại vậy ( ko khác nhau lắm đâu,đi từ cái dưới lên cái trên )

Ta có:

\(-1< 0\)

\(\Leftrightarrow n^2-1< n^2\) ( Với mọi n lớn hơn 0 )

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)< n^2\)

\(\Leftrightarrow\sqrt{\left(n-1\right)\left(n+1\right)}< n\) 

Áp dụng vào.......

Khách vãng lai đã xóa
Võ Thiên Long
Xem chi tiết
Phùng Minh Quân
23 tháng 7 2019 lúc 15:19

a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) ) 

b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)

c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)

do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm ) 

Nguyễn Thùy Linh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 7 2016 lúc 23:33

Ta có : \(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)

Áp dụng : \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}=2\left(\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2500}}\right)< 2\left(1+\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)=2\sqrt{2500}=2.50=100\)

Vậy ta có điều phải chứng minh.

Ngưu Kim
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
4 tháng 8 2019 lúc 21:51
Nguyễn Thành Long
Xem chi tiết