Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DUONG VU BAO NgOC
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2018 lúc 2:11

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 7 2017 lúc 8:35

Chọn D

Nga Đào
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2022 lúc 21:51

BPT đã cho vô nghiệm khi và chỉ khi: \(x^2-mx+m+3\ge0\) nghiệm đúng với mọi x

\(\Rightarrow\left\{{}\begin{matrix}a=1>0\\\Delta=m^2-4\left(m+3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow m^2-4m-12\le0\)

\(\Rightarrow-2\le m\le6\)

Jack Viet
Xem chi tiết
Jack Viet
Xem chi tiết
ღŇεʋεɾ_ɮε_Ąℓøŋεღ
10 tháng 2 2021 lúc 19:17

Tên vietjack mà không làm được thì mang tiếng người ta quá

Ngô Thành Chung
10 tháng 2 2021 lúc 20:28

a, Hệ ⇔ \(\left\{{}\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)

Hệ không thể có nghiệm duy nhất 

Hệ có nghiệm khi \(\left(1-m;+\infty\right)\cap\left(-\infty;3m-2\right)\ne\varnothing\)

⇔ 3m - 2 > 1 - m

⇔ m > \(\dfrac{4}{3}\)

Vậy hệ vô nghiệm khi m ≤ \(\dfrac{4}{3}\)

Hoàng tử bóng đêm
Xem chi tiết
Nguyễn Huy Tú
25 tháng 8 2021 lúc 17:57

a, Để pt có 2 nghiệm pb khi \(\Delta>0\)

\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)

b, Để pt trên là pt bậc 2 khi \(m\ne0\)

Để pt vô nghiệm khi \(\Delta< 0\)

\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)

c, Để pt trên là pt bậc 2 khi \(m\ne2\)

Để pt trên có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)

Khách vãng lai đã xóa
Vân Nguyễn
Xem chi tiết
Trần Đức Huy
3 tháng 2 2022 lúc 7:22

mx²+2(m-1)x+4 ≥0

bpt trên vô nghiệm <=>mx²+2(m-1)x+4 <0

a=m\(\ne0\)

\(\Delta'=\left(m-1\right)^2-m.4\)

     \(=m^2-2m+1-4m\)

     \(=m^2-6m+1\)

     \(=\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)\)

bpt vô nghiệm <=>\(\left\{{}\begin{matrix}a< 0\\\Delta'< 0\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}m< 0\\\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)< 0\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}m< 0\\3-2\sqrt{2}< m< 3+2\sqrt{2}\end{matrix}\right.\)

                        => không có m để bất phương trình vô nghiệm 

 

Jack Viet
Xem chi tiết
....
Xem chi tiết
trương khoa
30 tháng 7 2021 lúc 10:47

\(mx^2+2\left(m-1\right)x+m+3=0\)(Đk:m≠0)

\(\Delta'=\left(m-1\right)^2-m\left(m+3\right)\)

\(\Delta'=m^2-2m+1-m^2-3m\)

\(\Delta'=1-5m\)

a,Để pt có nghiệm kép 

Thì\(\Delta'=0\)

\(\Leftrightarrow1-5m=0\Rightarrow m=\dfrac{1}{5}\)

b, Để pt có 2 nghiệm phân biệt

Thì\(\Delta'>0\)

\(\Leftrightarrow1-5m>0\Rightarrow m< \dfrac{1}{5}\)

c,Để pt có nghiệm 

Thì\(\Delta'\ge0\)

\(\Leftrightarrow1-5m\ge0\Rightarrow m\le\dfrac{1}{5}\)

d, Để pt vô nghiệm 

Thì\(\Delta'< 0\)

\(\Leftrightarrow1-5m< 0\Rightarrow m>\dfrac{1}{5}\)

 

Akai Haruma
30 tháng 7 2021 lúc 10:47

Lời giải:
$m=0$ thì pt trở thành $-2x+3=0\Leftrightarrow x=\frac{3}{2}$

$m\neq 0$ thì pt là pt bậc 2 ẩn $x$

$\Delta'=(m-1)^2-m(m+3)=1-5m$

PT có nghiệm kép $\Leftrightarrow \Delta'=1-5m=0\Leftrightarrow m=\frac{1}{5}$

PT có 2 nghiệm pb $\Leftrightarrow \Delta'=1-5m>0$

$\Leftrightarrow m< \frac{1}{5}$

Vậy pt có 2 nghiệm pb khi $m< \frac{1}{5}$ và $m\neq 0$

PT có nghiệm khi \(\left[\begin{matrix} m=0\\ \Delta'=1-5m\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m\leq \frac{1}{5}\end{matrix}\right.\Leftrightarrow m\leq \frac{1}{5}\)

PT vô nghiệm khi $\Delta'=1-5m< 0$

$\Leftrightarrow m> \frac{1}{5}$

Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 13:21

Ta có: \(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot m\cdot\left(m+3\right)\)

\(=\left(2m-2\right)^2-4m\left(m+3\right)\)

\(=4m^2-8m+4-4m^2-12m\)

\(=-16m+4\)

a) Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow-16m=-4\)

hay \(m=\dfrac{1}{4}\)

b) Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-16m>-4\)

hay \(m< \dfrac{1}{4}\)

c) Để phương trình có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow-16m\ge-4\)

hay \(m\le\dfrac{1}{4}\)