C h o tan α = t . k h i đ ó sin 2 α b ằ n g
A. 2 t 1 + t
B. 2 t 1 + t 2
C. 2 t 1 - t 2
D. 2 t 1 - t
Tính:F=Cos(π/4+α) x cos(π/4-α)
G=Sin(π/3+α) x cos(π/3-α)
H=cos(π/2-α) x sin(π/2+α)
I=sin(π/4+α) - cos(π/4-α)
K=cos(π/6-x) - sin(π/3+x)
Bài 1: Tính gt biểu thức: \(cos^220^o+cos^240^o+cos^250^o+cos^270^o\)
Bài 2:Chứng minh hệ thức:
a,\(cot^2\text{α}-cos^2\text{α}=cot^2\text{α}.cos^2\text{α}\)
b,\(\dfrac{1+cos\text{ α}}{sin\text{ α}}=\dfrac{sin\text{ α}}{1-cos\text{ α}}\)
(P/s: tại mik ko tìm đc kí hiệu Anpha nên phải viết chữ =.=)
Các bạn giúp mik vs, mik đang cần gấp ak.Mik cảm ơn!!!!
bài 1: ta có : \(cos^220+cos^240+cos^250+cos^270\)
\(=cos^220+cos^270+cos^240+cos^250\)
\(=cos^220+cos^2\left(90-20\right)+cos^240+cos^2\left(90-40\right)\)
\(=cos^220+sin^220+cos^240+sin^240=1+1=2\)
bài 2: a) ta có : \(cot^2\alpha-cos^2\alpha=cos^2\alpha\left(\dfrac{1}{sin^2\alpha}-1\right)=cos^2\alpha.\left(\dfrac{1-sin^2\alpha}{sin^2\alpha}\right)\)
\(=cos^2\alpha.\left(\dfrac{cos^2\alpha}{sin^2\alpha}\right)=cos^2\alpha.cot^2\alpha\left(đpcm\right)\)
b) ta có : \(sin^2\alpha+cos^2\alpha=1\Leftrightarrow sin^2\alpha=1-cos^2\alpha\)
\(\Leftrightarrow sin^2\alpha=\left(1-cos\alpha\right)\left(1+cos\alpha\right)\Leftrightarrow\dfrac{1+cos\alpha}{sin\alpha}=\dfrac{sin\alpha}{1-cos\alpha}\left(đpcm\right)\)
❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm
a) Tính AB,AC
b) Tính số đo góc B, góc C
❤ 2/ Cminh các hệ thức:
a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\)
b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\)
c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α
b)Cho tan α=2/3. Tính sin α,cos α
❤ 4/Cminh các hệ thức sau không phụ thuộc vào α:
A=\(3\left(sin^4\text{a}+cos^4\text{α}\right)-2\left(sin^6\text{α}+cos^6\text{ α}\right)\)
B=\(sin^6\text{ α}+cos^6\text{ α}+3cos^2\text{ α}.sin^2\text{ α}\)
❤ 5/Không dùng máy tính, hãy tính:
A=sin\(^2\)10\(^o\)+\(sin^220^o\)+sin\(^2\)30\(^o\)+...+sin\(^2\)70\(^o\)+sin\(^2\)80\(^o\)
B=cos\(^212^o+cos^278^0+cos^21^o+cos^289^o\)
❤ 6/Cho ΔABC nhọn, CMinh: S\(_{ABC}\)=\(\frac{1}{2}\)AB.AC.sinA
❤ 7/Cho ΔABC có góc A=60,AB=3cm,AC=4cm, đường cao BH và CK.
a) Tính S\(_{\Delta ABC}\) , b) Tính \(_{\Delta AHK}\)
❤ 8/ Cho ΔABC có AB=AC=6cm,BC=4cm, đường cao BK
a) Tính các góc ΔABC(làm tìm đến phút)
b) Tính BK,AK,CK
Đăng câu hỏi thôi, không thêm kí tự đặc biệt vào bạn nhé
❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm
a) Tính AB,AC
b) Tính số đo góc B, góc C
❤ 2/ Cminh các hệ thức:
a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\)
b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\)
c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α
b)Cho tan α=2/3. Tính sin α,cos α
❤ 4/Cminh các hệ thức sau không phụ thuộc vào α:
A=\(3\left(sin^4\text{a}+cos^4\text{α}\right)-2\left(sin^6\text{α}+cos^6\text{ α}\right)\)
B=\(sin^6\text{ α}+cos^6\text{ α}+3cos^2\text{ α}.sin^2\text{ α}\)
❤ 5/Không dùng máy tính, hãy tính:
A=sin\(^2\)10\(^o\)+\(sin^220^o\)+sin\(^2\)30\(^o\)+...+sin\(^2\)70\(^o\)+sin\(^2\)80\(^o\)
B=cos\(^212^o+cos^278^0+cos^21^o+cos^289^o\)
❤ 6/Cho ΔABC nhọn, CMinh: S\(_{ABC}\)=\(\frac{1}{2}\)AB.AC.sinA
❤ 7/Cho ΔABC có góc A=60,AB=3cm,AC=4cm, đường cao BH và CK.
a) Tính S\(_{\Delta ABC}\) , b) Tính \(_{\Delta AHK}\)
❤ 8/ Cho ΔABC có AB=AC=6cm,BC=4cm, đường cao BK
a) Tính các góc ΔABC(làm tìm đến phút)
b) Tính BK,AK,CK
cho góc nhọn α :
chứng minh rằng: \(\frac{1-\tan\text{α}}{1+\tan\text{α}}\)=\(\frac{\cos\text{α}-\sin\text{α}}{\cos\text{α}+\sin\text{α}}\)
\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)
bài 1: a)biết sin α=√3/2.tính cos α,tan α,cot α
b)cho tan α=2.tính sin α,cos α,cot α
c)biết sin α=5/13.tính cos,tan,cot α
bài 2
biết sin α x cos α=12/25.tính sin,cos α
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
Chứng minh giá trị các biểu thức sau không phụ thuộc vào giá trị
của các góc nhọn α.
a) A = cos4α + 2cos2α . sin2α + sin4a
b) B = sin4α + cos2α . sin2α + cos2α
c) C = 2(sin α - cos α )2 - (sin α + cos α )2 + 6sin α . cos α
d) D = (tan α - cot α )2 - (tan α + cot α )2
e) E = 4 cos2 α + (sin α - cos α)2 + (sin α+ cosα)2 + 2(sin2 α -cos2 α)
f) F = \(\dfrac{1}{1+sin\text{α}}\)+\(\dfrac{1}{1-sin\text{α}}\)-2 tan2α
Cho ΔABC có AB=AC=1 , Góc A = 2α (0o< α <45o), đường cao AD và BE
a) Các tỉ số lượng giác: sinα, cosα, sin2α, cos2a được biểu diễn bởi những đường thẳng nào???
b) CM: ΔADC đồng dạng ΔBEC
c) sin2α= 2sinα . cosα
d) cos2α= 1- 2sin2α
= 2cos2α -1
= cos2α - sin2α
e) tan2α= \(\frac{2\tan\alpha}{1-\tan^2\alpha}\)
b: Xét ΔADC vuông tại D và ΔBEC vuông tại E có
\(\widehat{C}\) chung
Do đó: ΔADC\(\sim\)ΔBEC
Tính: D = cos2 α - sin α + cos (90o - α) + sin2 α + tan2 (90o - α) + 1 - \(\frac{1}{sin^2α}\)
D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)
\(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)
rút gọn:
1, 1-sin2α
2, (1+cos α)(1-cos α)
3, 1+sin2α+cos2α
4,sin α-sin α.cos2α
5, sin4α+cos4α+2.sin2α.cos2α
6,tan2α-sin2α.tan2α
7, cos2α+tan2α.cos2α
8, tan2α.(2.cos2α+sin2α-1)
\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)