Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 1 2018 lúc 3:14

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2018 lúc 12:31

nguyễn hoàng lê thi
Xem chi tiết
Hoàng Tử Hà
27 tháng 12 2020 lúc 0:07

Eo ơi, đừng!! Tách ra đi bạn ơi, để thế này khủng bố mắt người đọc quá :(

Mà hình như mấy bài này có trong tập đề của thầy tui gởi nè :v

Nguyễn Huỳnh Như
Xem chi tiết
xuyến
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 11 2021 lúc 21:38

Có \(5!\) cách

Đáp án D

Đại Tiểu Thư
1 tháng 11 2021 lúc 22:37

D

Kimian Hajan Ruventaren
Xem chi tiết
nguyễn thị hương giang
5 tháng 10 2021 lúc 21:32

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

le pham minh thuy
Xem chi tiết
phan như quỳnh
Xem chi tiết
nguyen huyen trang
31 tháng 1 2017 lúc 9:04

chịu thui nhưng chọn mk nha mk sẽ k bn với bạn nha

lâmcva.TPTN.K33
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 22:34

a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)

b: TH1: 3 nam 2 nữ

=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)

TH2: 2 nam 3 nữ

=>Số cách xếp là: 2!*3!*2!(cách)

TH3: 1 nam 4 nữ

=>Số cách xếp là 1!*4!*2!(cách)

TH4: 0 nam 5 nữ

=>Số cách xếp là 5!(cách)

=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)

c: Số cách chọn 2 nữ trong 7 nữ là: 

\(C^2_7\left(cách\right)\)

Số cách xếp 3 nam và 2 nữ là:

\(3!\cdot3!\left(cách\right)\)

=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)

Lê Kiều Nhiên
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 1 2022 lúc 22:28

Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách

Xếp 6 học sinh trường B vào dãy còn lại: 6! cách

Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị 

Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn