Thực hiện phép nhân:
a) ( x 2 -2x + l)(x-l);
b) ( x 3 - 2 x 2 + x -1)(5 - x);
c) (c + 3)(c-2)(c + l).
Thực hiện các phép nhân:
a) \(\left( {x - y} \right)\left( {x - 5y} \right)\)
b) \(\left( {2x + y} \right)\left( {4{x^2} - 2xy + {y^2}} \right)\)
`a, (x-y)(x-5y)`
`= x^2 - xy - 5xy + 5y^2`
`= x^2 - 6xy + 5y^2`
`b, (2x+y)(4x^2 -2xy + y^2)`
`= (2x)^3 + y^3`
`= 8x^3 + y^3`
a) \(\left(x-y\right)\left(x-5y\right)\)
\(=x^2-5xy-xy+5y^2\)
\(=x^2-6xy+5y^2\)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\)
\(=8x^3+y^3\)
Bài 8.Thực hiện phép nhân:a) (x + 1)(1 + x -x2+ x3-x4) -(x -1)(1 + x + x2+ x3+ x4);b) ( 2b2-2 -5b + 6b3)(3 + 3b2-b)
Bài 8.Thực hiện phép nhân:a) (x + 1)(1 + x -x2+ x3-x4) -(x -1)(1 + x + x2+ x3+ x4);b) ( 2b2-2 -5b + 6b3)(3 + 3b2-b)
a. (x + 1)(1 + x - 2x + 3x - 4x) - (x - 1)(1 + x + 2x + 3x + 4x)
= (x + 1)(1 - 2x) - (x - 1)( 1 + 10x)
= x - 2x2 + 1 - 2x - x - 10x2 + 1 + 10x
= x - 2x - x + 10x - 2x2 - 10x2 + 1 + 1
= 8x - 8x2 + 2
= -8x + 8x + 2
= -(-8x + 8x + 2)
= 8x2 - 8x - 2
= 8x2 - 4x - 4x - 2
= 4x(2x - 1) - 2(2x + 1)
b. (2b2 - 2 - 5b + 6b3)(3 + 3b2 - b)
= (4b - 2 - 5b + 18b)(3 + 6b - b)
= (17b - 2)(3 + 5b)
= 51b + 85b2 - 6 + 10b
= 85b2 + 51b + 10b - 6
= \(51b\left(\dfrac{5}{3}+1\right)+6\left(\dfrac{5}{3}-1\right)\)
Bài 8.Thực hiện phép nhân:a) (x + 1)(1 + x -x2+ x3-x4) -(x -1)(1 + x + x2+ x3+ x4);b) ( 2b2-2 -5b + 6b3)(3 + 3b2-b
Bạn ghi rõ lại đề đi bạn, khó hiểu quá
Thực hiện các phép nhân:
a) \(\left( { - 5{a^4}} \right)\left( {{a^2}b - a{b^2}} \right)\) b) \(\left( {x + 2y} \right)\left( {x{y^2} - 2{y^3}} \right)\)
a) \(\left(-5a^4\right)\cdot\left(a^2b-ab^2\right)\)
\(=\left(-5a^4\cdot a^2b\right)-\left(-5a^4\cdot ab^2\right)\)
\(=-5a^6b+5a^5b^2\)
b) \(\left(x+2y\right)\left(xy^2-2y^3\right)\)
\(=x^2y^2-2xy^3+2xy^3-4y^4\)
\(=x^2y^2-4y^4\)
`a, (-5a^4)(a^2b - ab^2)`
`= -5(a^(4+2) . b) + 5a^(4+1) . b^2`
`= -5a^6b + 5a^5b^2`
`b, (x+2y)(xy^2-2y^3)`
`= x^2y^2 + 2xy^3 - 2xy^3 - 4y^4`
Thực hiện các phép nhân:
a) \(\left( {4 - x} \right)\left( {4 + x} \right)\) b) \(\left( {2y + 7z} \right)\left( {2y - 7z} \right)\) c) \(\left( {x + 2{y^2}} \right)\left( {x - 2{y^2}} \right)\)
`a, (4-x)(4+x) = 16 - x^2`
`b, (2y+7z)(2y-7z) = 4y^2 - 49z^2`
`c, (x+2y^2)(x-2y^2)`
`= x^2 - 4y^4`
Thực hiện các phép nhân:
a) \(3x\left( {2xy - 5{x^2}y} \right)\) b) \(2{x^2}y\left( {xy - 4x{y^2} + 7y} \right)\)
c) \(\left( { - \frac{2}{3}xy^2 + 6y{z^2}} \right).\left( { - \frac{1}{2}xy} \right)\)
`a)`
`3x(2xy - 5x^2y)`
`= 3x*2xy + 3x* (-5x^2y)`
`= 6x^2y - 15x^3y`
`b)`
`2x^2y (xy - 4xy^2 + 7y)`
`= 2x^2y * xy + 2x^2y * (-4xy^2) + 2x^2y * 7y`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c)`
`(-2/3xy^2 + 6yz^2)*(-1/2xy)`
`= (-2/3xy^2)*(-1/2xy) + 6yz^2 * (-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
`a, 3x(2xy-5x^2y)`
`= 6x^2y - 15x^3y`
`b, 2x^2y(xy-4xy^2+7y)`
`= 2x^3y^2 - 8x^3y^3 + 14x^2y^2`
`c, (-2/3xy^2 + 6yz^2).(-1/2xy)`
`= 1/3x^2y^3 - 3xy^2z^2`
Thực hiện các phép chia sau:
\(\begin{array}{l}a)3{x^7}:\frac{1}{2}{x^4};\\b)( - 2x):x\\c)0,25{x^5}:( - 5{x^2})\end{array}\)
\(\begin{array}{l}a)3{x^7}:\dfrac{1}{2}{x^4} = (3:\dfrac{1}{2}).({x^7}:{x^4}) = 6{x^3}\\b)( - 2x):x = [( - 2):1].(x:x) = - 2\\c)0,25{x^5}:( - 5{x^2}) = [0,25:( - 5)].({x^5}:{x^2}) = - 0,05.{x^3}\end{array}\)
Sử dụng hằng đẳng thức để thực hiện phép chia:
a) ( x 2 - 2x + l) :(x - 1);
b) (8 x 3 +27): (2x + 3);
c) ( x 6 - 6 x 4 + 12 x 2 - 8): (2 - x 2 ).
a) Biến đổi x 2 – 2x + 1 = ( x – 1 ) 2 ; thực hiện chia được kết quả x – 1.
b) Biến đổi 8 x 3 + 27 = (2x + 3)(4 x 2 – 6x + 9); thực hiện phép chia được kết quả 4 x 2 – 6x + 9.
c) Phân thích x 6 – 6 x 4 + 12 x 2 – 8 = ( x 2 – 2)( x 4 – 4 x 2 + 4); thực hiện phép chia được kết quả - x 4 + 4 x 2 – 4.