Tính giá trị của biểu thức 16 x 2 – 24x + 9 trong mỗi trường hợp sau:
a) x = 0; b) x = 1 4 ; c) x = 12; d) x = 3 4 ;
Tính giá trị của biểu thức P = (-35).x - (-15).37 trong mỗi trường hợp sau:
a) x = 15;
b) x = - 37.
a) Thay x = 15 ta được:
P = (-35).x - (-15).37 = (-35).15 - (-15).37
= (-35).15 + 15.37 = 15.[(-35) +37] = 15.2 = 30.
b) Thay x = -37 ta được:
P = (-35).(-37) - (-15).37 = 35.37 + 15.37
= 37.(15 + 35) = 37.50 = 1850.
Tính giá trị của biểu thức trong mỗi trường hợp sau:
a) 2x, biết x = -8;
b) -7y, biết y = 6;
c) -8z - 15, biết z = -4.
a) Thay x = - 8 => 2 . (- 8) = - (2 . 8) = - 16.
b) Thay y = 6 => (- 7) . 6 = - (7 . 6) = - 36.
c) Thay z = - 4 => – 8 . (- 4) – 15 = - (8 . 4) – 15 = 32 – 15 = 17.
a) Thay x=-8 vào biểu thức 2x, ta được:
\(2\cdot\left(-8\right)=-16\)
b) Thay y=6 vào biểu thức -7y, ta được:
\(-7\cdot6=-42\)
c) Thay z=-4 vào biểu thức -8z-15, ta được:
\(\left(-8\right)\cdot\left(-4\right)-15=32-15=17\)
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
Cho hai biểu thức A = 7 x + 8 và B = x x - 3 + 2 x - 24 x - 9 với x ≥ 0, x ≠ 9. Tính giá trị của biểu thức A khi x = 25
A. 7 13
B. 7
C. 7 33
D. 13 7
Tính giá trị của biểu thức (x2 – 5)(x + 3) + (x + 4)(x – x2) trong mỗi trường hợp sau:
a) x = 0 ; b) x = 15 ; c) x = -15 ; d) x = 0,15
Rút gọn biểu thức:
A = (x2 – 5)(x + 3) + (x + 4)(x – x2)
= x2.(x + 3) + (–5).(x + 3) + x.(x – x2) + 4.(x – x2)
= x2.x + x2.3 + (–5).x + (–5).3 + x.x + x.(–x2) + 4.x + 4.(–x2)
= x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2
= (x3 – x3) + (3x2 + x2 – 4x2) + (4x – 5x) – 15
= –x – 15.
a) Nếu x = 0 thì A = –0 – 15 = –15
b) Nếu x = 15 thì A = –15 – 15 = –30
c) Nếu x = –15 thì A = –(–15) – 15 = 15 – 15 = 0
d) Nếu x = 0,15 thì A = –0,15 – 15 = –15,15
Cho biểu thức \(A=2x+3\sqrt{4-x}+1\). Trong mỗi trường hợp sau hãy thay x bởi giá trị đã cho rồi tính giá trị của biểu thức:
a) Trường hợp x = - 5
b) Trường hợp x = 5
ĐKXĐ: x<=4
a: Thay x=-5 vào A, ta được:
\(A=2\cdot\left(-5\right)+3\cdot\sqrt{4+5}+1=-10+1+3\cdot3=0\)
b: Vì x=5 không thỏa mãn ĐKXĐ nên khi x=5 thì A không có giá trị
Lập bảng xét dấu của mỗi tam thức bậc hai sau:
a) \(f\left( x \right) = - 3{x^2} + 4x - 1\)
b) \(f\left( x \right) = {x^2} - x - 12\)
c) \(f\left( x \right) = 16{x^2} + 24x + 9\)
Tham khảo:
a) \(f\left( x \right) = - 3{x^2} + 4x - 1\)
\(a = - 3 < 0\), \(\Delta = {4^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = 4 > 0\)
=> \(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\)
Bảng xét dấu:
b) \(f\left( x \right) = {x^2} - x - 12\)
\(a = 1 > 0\), \(\Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 > 0\)
=> \(f\left( x \right)\) có 2 nghiệm \(x = - 3,x = 4\)
Bảng xét dấu:
c) \(f\left( x \right) = 16{x^2} + 24x + 9\)
\(a = 16 > 0\), \(\Delta ' = {12^2} - 16.9 = 0\)
=> \(f\left( x \right)\) có nghiệm duy nhất \(x = - \frac{3}{4}\)
Bảng xét dấu:
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
Tính giá trị của mỗi biểu thức sau:
a) 250 + 250 x 2
(250 + 250) x 2
b) 750 – 50 x 5
(750 – 50) x 5
c) 210 x 4 – 4 x 210
3 x (270 : 9) x 0
a) \(250 + 250 × 2 = 250 + 500 = 750 \\ (250 + 250) × 2 = 500 × 2 = 1 000\)
b)\( 750 – 50 × 5 = 750 – 250 = 500\\
(750 – 50) × 5 = 700 × 5 = 3 500\)
c) \(210 × 4 – 4 × 210 = 840 – 840 = 0\\
3 × (270 : 9) × 0 = 0\)