Chứng minh rằng:x²-2x+2021>0 với mọi số thực x
Chứng minh rằng:x+x2-3<0 với mọi số thực x
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
Chứng minh rằng:x^5-x^2 ko phải là số chính phương với mọi x thuộc Z
Chứng minh rằng:x8-x7+x5-x3+1>0 với mọi x thuộc R
Chứng minh phương trình ( m^2 - 5m + 11 )x^2021 + 2x^2 + 1 = 0 luôn có nghiệm với mọi m
Đặt \(f\left(x\right)=\left(m^2-5m+11\right)x^{2021}+2x^2+1\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R
\(f\left(0\right)=1>0\)
\(f\left(-1\right)=-\left(m^2-5m+11\right)+3=-\left(m-\dfrac{5}{2}\right)^2-\dfrac{7}{4}< 0\) ; \(\forall m\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn có ít nhất 1 nghiệm thuộc (-1;0) với mọi m
Bài 6: Chứng minh rằng:
a) x2 – x + 1 > 0 với mọi số thực x
b) -x2+2x -4 < 0 với mọi số thực x
Bài 7: Tính nhanh giá trị biểu thức:
tại x = 18; y = 4
b) (2x + 1)2 + (2x - 1)2 - 2(1 + 2x)(1 - 2x) tại x = 100
a) x2 – x + 1
=(x2 – x + 1/4 )+3/4
=(x-1/2)2+3/4
ta có (x-1/2)2>=0
(x-1/2)2+3/4>=+3/4>0
vậy (x-1/2)2+3/4>0 với mọi số thực x
b) -x2+2x -4
= -x2+2x -1-3
=-(x2-2x +1)-3
=-(x-2)2-3
ta có (x-2)2>=0
=>-(x-2)2=<0
=>-(x-2)2-3=<-3<0
vậy -(x-2)2-3<0 với mọi số thực x
chứng minh
a. x2-4xy-4y2+3>0 với mọi số thực x và y
b. 2x-2x2-1<0 với mọi số thực x
a)\(x^2-4xy+4y^2+3\)
\(=\left(x-2y\right)^2+3\)
Do \(\left(x-2y\right)^2\ge0\forall x,y\)
\(\left(x-2y\right)^2+3\ge0+3\forall x,y\)
\(\left(x-2y\right)^2+3>0\forall x,y\)
=> Đpcm
b)\(2x-2x^2-1\)
\(=-x^2-x^2+2x-1\)
\(=-x^2-\left(x-1\right)^2\)
\(=-\left[x^2+\left(x-y\right)^2\right]< 0\)
=> đpcm
Làm nảy giờ, mình thấy toàn mấy bài trong phân ôn tập chương I. Đừng đăng tất cả các bạn tập, bạn suy nghĩ khi nào ko được bí quá hả đăng hỏi nha bạn! Nếu có gì ko hiểu hỏi, mình giải thích cho. Bài này mình cũng được thầy giảng rồi.
Chúc bạn học tốt!^^
sai đề câu a ko bạn ? 2 dấu trừ đằng sau thì làm sao ra đc HĐT
chứng minh rằng :
a)x2-x+1<0 với mọi số thực x
b)-x2+2x-4<0 với mọi số thực x
a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x
Ta có:
\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(x^2-x+1>0\) với mọi \(x\in R\)
b)Ta có:
\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)
Chứng minh x2-2x+2>0 với mọi số thực x
Có : x^2-2x+2 = (x^2-2x+1)+1 = (x-1)^2 + 1
Vì (x-1)^2 >= 0 nên (x-1)^2 + 1 > 0
=> ĐPCM
k mk nha
Đây là Kết quả của mình
Ta có \(x^2\ge2x\)( dấu '=' chỉ xảy ra khi và chỉ khi x=2)
Ta có \(x^2\ge0\)( dấu '=' chỉ xảy ra khi và chỉ khi x=0)
Suy ra \(x^2\ge2x\ge0\)(1)
Mà ta có \(x^2-2x+2\)Nhận thấy \(2>0\)(2)
Từ (1) và (2) có \(x^2-2x+2>0\)
Vậy \(x^2-2x+2>0\)