Giải các phương trình sau - 4 1 3 x - 12 = 0 .
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải các phương trình sau a.(2x-5)(12+5x)=0 b(x-3)(x-4)-2(x-3=0 c.x(x-1)(x+1)=0 dù.2x/3+2x-1/6=0
`a,(2x-5)(12+5x)=0`
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\12+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{12}{5}\end{matrix}\right.\)
`b, (x-3)(x-4)-2(x-3)=0`
`<=>(x-3)(x-4-2)=0`
`<=>(x-3)(x-6)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
`c, x(x-1)(x+1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
`d, (2x)/3 +(2x-1)/6=0`
`<=> (4x)/6 +(2x-1)/6=0`
`<=> (4x+2x-1)/6=0`
`<=> (6x-1)/6=0`
`<=> 6x-1=0`
`<=> 6x=1`
`<=>x=1/6` ( đề là vậy à bạn )
a) \(\left(2x-5\right)\left(12+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\12+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\5x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2,5\\x=-2,4\end{matrix}\right.\)
b) \(\left(x-3\right)\left(x-4\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x-4\right)-2\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
c) \(x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\\x=0\end{matrix}\right.\)
d) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=0\)
\(\Leftrightarrow\dfrac{4x+2x-1}{6}=0\)
\(\Leftrightarrow6x-1=0\)
\(\Leftrightarrow6x=1\Leftrightarrow x=\dfrac{1}{6}\)
Bài 3: Giải các phương trình sau:
a) 2x – 5 = 0 b) 12 – 3x = 3( 4-x) c) 2(x – 3) = 2x-1
Giải các bất phương trình sau:
a) x 2 4 x − 3 + 2 3 − x x + 4 ≤ 0 ;
b) x 1 − 2 x + x + 1 2 + x − 2 2 < 0 ;
c) x 2 2 x − 1 + x + 2 2 − 2 x 3 − x + 3 > 0
giải các phương trình sau: 1. 4x-12=0 2. x(x+1)-(x+2)(x-3)=7 3. 7+2x=22-3x 4.(x-1)-(2x-1)=9-x
1. 4x-12=0
<=>4x=12
<=>x=3
2. x.(x+1)-(x+2)(x+3)=7
<=>x2+x-x2-3x-2x-6=7
<=>x2-x2+x-2x-3x=7+6
<=>-4x=13
<=>x=\(-\dfrac{13}{4}\)
3. 7+2x=22-3x
<=>2x+3x=22-7
<=>5x=15
<=>x=3
4. (x-1)-(2x-1)=9-x
<=>x-1-2x+1=9-x
<=>x-2x+x=9+1-1
<=>0x=9
vô nghiệm
Giải các phương trình sau:
a) x − 2 2 − 2 x + 3 2 = 0 ;
b) 9 2 x + 1 2 − 4 x + 1 2 = 0 ;
c) x + 1 2 + 2 x + 1 + 1 = 0 ;
d) x − 1 x 2 − 9 + x + 3 = 0 .
Bài 1: Giải các phương trình sau:
a) x - 2 = 0 b)x² – 2x =0
e) 2x² +5x +3= 0 f) x² –x-12 =0
a) \(x-2=0\Leftrightarrow x=2\)
b) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
e) \(2x^2+5x+3=0\Leftrightarrow\left(2x+3\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=-1\end{matrix}\right.\)
f) \(x^2-x-12=0\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Giải các phương trình sau: ( x 2 + x ) 2 + 4 ( x 2 + x ) - 12 = 0
⇔ ( x + 2 )( x - 1 ) = 0 ⇔
Vậy phương trình có tập nghiệm là S = { - 2;1 }.
Bài 1:giải các phương trình sau
a)2x-10=0 b)3,4-x=-4 c)x-4/5=1/5 d)x+12=2-x e)2(x-3)-3x+5=0
a) \(2x-10=0\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
Vậy tập nghiệm của phương trình là: S = {5}
b) \(3,4-x=-4\)
\(\Leftrightarrow x=7,4\)
Vậy tập nghiệm của phương trình là: S = {7,4}
c) \(x-\frac{4}{5}=\frac{1}{5}\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm của phương trình là: S = {1}
d) \(2\left(x-3\right)-3x+5=0\)
\(\Leftrightarrow2x-6-3x+5=0\)
\(\Leftrightarrow-x-1=0\)
\(\Leftrightarrow x=-1\)
Vậy tập nghiệm của phương trình là: S = {-1}
a, \(2x-10=0\Leftrightarrow x=5\)
Vậy tập nghiệm của phương trình là S = {5}
b, \(3,4-x=-4\Leftrightarrow x=7,4\)kết luận tương tự như trên và các phần còn lại
c, \(\frac{x-4}{5}=\frac{1}{5}\)Khử mẫu : \(x-4=1\Leftrightarrow x=5\)
d, \(x+12=2-x\Leftrightarrow2x=-10\Leftrightarrow x=-5\)
e, \(2\left(x-3\right)-3x+5=0\Leftrightarrow2x-6-3x+5=0\)
\(\Leftrightarrow-x-1=0\Leftrightarrow x=-1\)
Giải các phương trình sau: a) x - 25 = 0 b) x - 3 4x + 12 = 0
tham khảo
x^2-25=0
x^2=0+25
x^2=25
x=25/2
x(x-3)+4x-12=0
x(x-3)+(4x-12)=0
x(x-3)+4(x-3)=0
(x-3)(x+4)=0
=> x-3=0 => x=3
=> x+4=0 => x= -4