Trong các dãy số sau, dãy số nào là dãy số bị chặn?
A. u n = n 2
B. u n = 2 n + 1 n − 1
C. u n = 2 n + sin 2 n
D. u n = 1 − n 3
Trong các dãy số \(\left( {{u_n}} \right)\) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) \({u_n} = n - 1\);
b) \({u_n} = \frac{{n + 1}}{{n + 2}}\);
c) \({u_n} = sin\;n\;\);
d) \({u_n} = {\left( { - 1} \right)^{n - 1}}{n^2}\).
a) Ta có: \(n \ge 1\; \Rightarrow n - 1 \ge 0\; \Rightarrow {u_n} \ge 0,\;\forall \;n \in {N^*}\;\)
Do đó, \(\left( {{u_n}} \right)\) bị chặn dưới bởi 0.
\(\left( {{u_n}} \right)\) không bị chặn trên vì không tồn tại số M nào để \(n - 1 < M,\;\forall \;n \in {N^*}\).
b) Ta có:
\(\begin{array}{l}\forall n \in {N^*},{u_n} = \frac{{n + 1}}{{n + 2}} > 0.\\{u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}} < 1,\forall n \in {N^*}\\ \Rightarrow 0 < {u_n} < 1\end{array}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn.
c) Ta có:
\( - 1 < \sin n < 1\)
\( \Rightarrow - 1 < {u_n} < 1,\forall n \in {N^*}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn.
d) Ta có:
Nếu n chẵn, \({u_n} = - {n^2} < 0\), \(\forall n \in {N^*}\).
Nếu n lẻ, \({u_n} = {n^2} > 0\), \(\forall n \in {N^*}\).
Vậy \(\left( {{u_n}} \right)\) không bị chặn.
Trong các dãy số \(\left( {{u_n}} \right)\) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) \({u_n} = {n^2} + 2\)
b) \({u_n} = - 2n + 1\)
c) \({u_n} = \frac{1}{{{n^2} + n}}\)
a) Ta có:
\(\begin{array}{l}{n^2} \ge 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {n^2} + 2 \ge 3\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
Dãy số bị chặn dưới
b) Ta có:
\(\begin{array}{l} - 2n \ge - 2\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow - 2n + 1 \ge - 1\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
Dãy số bị chặn dưới
c) Ta có:
\(\begin{array}{l}{n^2} \ge 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {n^2} + n \ge 2\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow 0 \le \frac{1}{{{n^2} + n}} \le \frac{1}{2}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
Dãy số bị chặn
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + 1}}{{n + 2}}\). Phát biểu nào sau đây đúng?
A. Dãy số tăng và bị chặn.
B. Dãy số giảm và bị chặn.
C. Dãy số giảm và bị chặn dưới.
D. Dãy số giảm và bị chặn trên.
• Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right) + 1}}{{\left( {n + 1} \right) + 2}} = \frac{{n + 1 + 1}}{{n + 1 + 2}} = \frac{{n + 2}}{{n + 3}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{n + 2}}{{n + 3}} - \frac{{n + 1}}{{n + 2}} = \frac{{{{\left( {n + 2} \right)}^2} - \left( {n + 1} \right)\left( {n + 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{{\left( {{n^2} + 4n + 4} \right) - \left( {{n^2} + n + 3n + 3} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2} + 4n + 4 - {n^2} - n - 3n - 3}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{1}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)
Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
• Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{\left( {n + 2} \right) - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\)
\(\forall n \in {\mathbb{N}^*}\) ta có:
\(n + 2 > 0 \Leftrightarrow \frac{1}{{n + 2}} > 0 \Leftrightarrow 1 - \frac{1}{{n + 2}} < 1 \Leftrightarrow {u_n} < 1\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.
\(n \ge 1 \Leftrightarrow n + 2 \ge 1 + 2 \Leftrightarrow n + 2 \ge 3 \Leftrightarrow \frac{1}{{n + 2}} \le \frac{1}{3} \Leftrightarrow 1 - \frac{1}{{n + 2}} \ge 1 - \frac{1}{3} \Leftrightarrow {u_n} \ge \frac{2}{3}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.
Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.
Chọn A.
Trong các dãy số u n sau, dãy nào bị chặn dưới, bị chặn trên và bị chặn? u n = sin n + cos n .
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!
Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.
Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.
Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.
Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn
\(\Rightarrow\) Chọn D.
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Trong các dãy số sau, dãy số nào bị chặn?
A. Dãy \(\left(a_n\right)\), với \(a_n=\sqrt{n^3+n},\forall n\in N^*\).
B. Dãy \(\left(b_n\right)\), với \(b_n=n^2+\dfrac{1}{2n},\forall n\in N^*\).
C. Dãy \(\left(c_n\right)\), với \(c_n=\left(-2\right)^n+3,\forall n\in N^*\).
D. Dãy \(\left(d_n\right)\), với \(d_n=\dfrac{3n}{n^3+2},\forall n\in N^*\).
Nếu được thì giải thích chi tiết từng đáp án giúp mình với ạ, mình cảm ơn!