Phương tình 6 x 9 - x 2 = x x + 3 - 3 3 - x có nghiệm là
A. x = -4
B. x = -2
C. Vô nghiệm
D. Vô số nghiệm
câu 1 , giải phương tình
a. x^2 +5x+4 =0
b. 2x/x-3 = x^3 +11x-6/x^2-9
câu 2 . y= x^2 và y= x+2
a. vẽ đồ thị
b. tìm tọa độ giao điểm
3. với giá trị nào của m thì phương trình có nghiệm kép
x^2 + ( 2m+3)x+m^2+3=0
câu 1
a)C1:denta
x^2 +5x+4 =0
<=>52-4(1.4)=9
\(\Leftrightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-5\pm\sqrt{9}}{2}\)
=>x=-4 hoặc -1
C2:vi ét
tổng các nghiệm x1+x2=\(-\frac{b}{a}=-5\)
tích các nghiệm x1*x2=\(\frac{c}{a}=4\)
=>x=-4 hoặc -1
giải phương tình:
\(\sqrt{x^2+6x+9}+1=x\)
\(\sqrt{x^2+6x+9}+1=x\)
ĐK : ∀ x ∈ R
⇔ \(\sqrt{\left(x+3\right)^2}=x-1\)
⇔ \(\left|x+3\right|=x-1\)(*)
Với x < 3
(*) ⇔ -( x + 3 ) = x - 1
⇔ -x - 3 = x - 1
⇔ -x - x = -1 + 3
⇔ -2x = 2
⇔ x = -1 ( ktm )
Với x ≥ 3
(*) ⇔ x + 3 = x - 1
⇔ x - x = -1 - 3
⇔ 0 = -4 ( vô lí )
=> Phương trình vô nghiệm
Viết biểu thức sau thành 1 tổng (hiệu) của 2 lập phương và tình ía trị của chúng
a/ (x-1) (\(x^2\)+x+1) tại x =-2
b/ (x+5) (\(x^2\)+x+1) tại x =-4
c/ (x-3) (\(x^2\)+3x+9) tại x=13
d/ (2x-1) (4\(x^2\)+2x+1) tại x=-1
a) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-1\)
\(=\left(-2\right)^3-1=-8-1=-9\)
c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3-27\)
\(=13^3-27=2170\)
d) Ta có: \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8x^3-1\)
\(=8\cdot\left(-1\right)^3-1=-8-1=-9\)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)
Giải Phương trình: 13 - x / x+3 - 6x^2 + 6 / x^4 - 8x^2 - 9 - 3x + 6 / x^2 + 5x + 6 - 2 / x -3 =0
giải phương trình sau :
\(\left(\dfrac{x+6}{x-6}\right)\left(\dfrac{x+4}{x-4}\right)^2+\left(\dfrac{x-6}{x+6}\right)\left(\dfrac{x+9}{x-9}\right)^2=2\dfrac{x^2+36}{x^2-36}\)
giải phương trình
2 x^3+9 x^2-6 x (1+2 sqrt(6 x-1))+2 sqrt(6 x-1)+8 = 0
giải hệ phương tình \(\hept{\begin{cases}x^2-5y+3+6\sqrt{y^2-7x+4}=0\\y\left(y-x+2\right)=3x+3\end{cases}}\)
Bài 3 (trang 6 SGK Toán 9 Tập 1)
Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương tình sau (làm tròn đến chữ số thập phân thứ ba):
a) $x^2 = 2$; b) $x^2 = 3$;
c) $x^2 = 3,5$; d) $x^2 = 4,12$.
Hướng dẫn:
Nghiệm của phương trình $x^2 = a$ ( với $a \ge 0$) là các căn bậc hai của $a$.
\(a)x^2=2\Rightarrow x_1=\sqrt{2}\) và \(x_2=-\sqrt{2}\)
Dùng máy tính bỏ túi ta tính được:
\(\sqrt{2}\text{≈}1,414213562\)
Kết quả làm tròn đến chữ số thập phân thứ ba là:
\(x_1=1,414;x_2=-1414\)
\(b)x^2=3\Rightarrow x_1=\sqrt{3}\)và \(x_2=-\sqrt{3}\)
Dùng máy tính ta được:
\(\sqrt{3}\text{≈ 1,732050907}\)
Vậy \(x_1=1,732;x_2=-1,732\)
\(c)x^2=3,5\Rightarrow x_1=\sqrt{3,5}\)và \(x_2=-\sqrt{3,5}\)
Dùng máy tính ta được:
\(\sqrt{3,5}\text{≈ 1,870828693}\)
Vậy \(x_1=1,871;x_2=-1,871\)
\(d)x^2=4,12\Rightarrow x_1=\sqrt{4,12}\)và \(x_2=-\sqrt{4,12}\)
Dùng máy tính ta được:
\(\sqrt{4,2}\text{≈ 2,029778313}\)
Vậy \(x_1=2,030;x_2=-2,030\)
a) x = \(\sqrt{2}\)
b) x = \(\sqrt{3}\)
c) x = \(\dfrac{\sqrt{14}}{2}\)
d)x = \(\dfrac{\sqrt{103}}{5}\)
a) x2 = 2
=> √x2 = √2
<=> |x| = √2
<=> x = +- √2 ≈ +- 1.414
b) x2 = 3
=> |x| = √3
<=> x = +-√3 ≈ +- 1.732
c) x2 = 3.5
=> |x| = √3.5
<=> x = +- √3.5 ≈ +- 1.871
d) x2 = 4.12
=> |x| = √4.12
<=> x = +- √4.12 ≈ +- 2.030
giải phương trình x/(x+3)+6/(x-3)=-18/(9-x^2)
\(\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{-18}{9-x^2}\)
\(\Leftrightarrow\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{18}{x^2-9}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
\(\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{18}{x^2-9}\)
\(\Leftrightarrow\dfrac{x.\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{6.\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow x^2-3x+6x+18=18\)
\(\Leftrightarrow x^2-3x+6x=18-18\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow x=0hoặcx+3=0\)
\(\Leftrightarrow x=0\left(tm\right)hoặcx=-3\left(ktm\right)\)
Vậy phương trình có nghiệm là \(x=0\)