Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Đồng Thức Tiên A
Xem chi tiết
ʚ_0045_ɞ
26 tháng 3 2018 lúc 11:01

Ta có: x ≤ 0 ⇒ |x|=−x|x|=−x

Suy ra: x+|x|=x−x=0x+|x|=x−x=0

Vậy phương trình  x+|x|=0x+|x|=0 nghiệm đúng với mọi x ≤ 0.

✓ ℍɠŞ_ŦƦùM $₦G ✓
26 tháng 3 2018 lúc 12:14

Ta có : x + |x| = 0 

=> |x| = -x (1)

Ta có : |x| = x 

<=> \(\orbr{\begin{cases}\left|x\right|=x\left(x\ge0\right)\\\left|x\right|=-x\left(x\le0\right)\end{cases}}\) (2)

Từ (1) và (2) => phương trình có nghiệm x ≤ 0 (đpcm)

shunnokeshi
Xem chi tiết
Kiệt Nguyễn
25 tháng 1 2020 lúc 13:54

Ta có  \(x^2-2x+2=\left(x-1\right)^2+1>0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 3 2017 lúc 13:21

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2018 lúc 15:24

b) Δ = m - 2 2  -4.(-m + 1) =  m 2  - 4m + 4 + 4m - 4 = m 2  ≥ 0 ∀ m

⇒ Phương trình đã cho luôn có nghiệm với mọi m

Pink Pig
Xem chi tiết
Minh Hồng
25 tháng 4 2022 lúc 11:43

Xét phương trình \(x^2-2\left(m+4\right)x+2m+6=0\)

\(\Delta'=\left(m+4\right)^2-\left(2m+6\right)=m^2+2m+16-2m-6=m^2+10>0\)

Vậy phương trình luôn có nghiệm với mọi \(m\)

Hà Duy Nam
Xem chi tiết
Akai Haruma
31 tháng 1 2023 lúc 23:58

Lời giải:

Ta có:
$\Delta=(2m+1)^2-4(m^2+m-1)=5>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có nghiệm với mọi $m\in\mathbb{R}$

Kì Thư
Xem chi tiết
Trương Huy Hoàng
4 tháng 3 2021 lúc 20:29

x2 - (2m + 3)x + 4m + 2 = 0

Có: \(\Delta\) = [-(2m + 3)]2 - 4.1.(4m + 2) = 4m2 + 12m + 9 - 16m - 8 = 4m2 - 4m + 1 = (2m - 1)2

Vì (2m - 1)2 \(\ge\) 0 với mọi m hay \(\Delta\) \(\ge\) 0

\(\Rightarrow\) Pt luôn có nghiệm với mọi m

Chúc bn học tốt!

Nguyễn Lê Phước Thịnh
4 tháng 3 2021 lúc 20:36

Ta có: \(\Delta=\left(2m+3\right)^2-4\cdot1\cdot\left(4m+2\right)\)

\(\Leftrightarrow\Delta=4m^2+12m+9-4\left(4m+2\right)\)

\(\Leftrightarrow\Delta=4m^2+12m+9-16m-8\)

\(\Leftrightarrow\Delta=4m^2-4m+1\)

\(\Leftrightarrow\Delta=\left(2m-1\right)^2\ge0\forall m\)

Vậy: Phương trình luôn có nghiệm với mọi m

ngoc nguyen
Xem chi tiết
Minh Hiếu
19 tháng 3 2023 lúc 19:21

\(x\left(x-a\right)+x\left(x-b\right)+x\left(x-c\right)=0\)

\(x^2-ax+x^2-bx+x^2-cx=0\)

\(3x^2-\left(a+b+c\right)x=0\)

\(\Delta=\left(a+b+c\right)^2\ge0\forall a,b,c\)

=> phương trình luôn có nghiệm với mọi a,b,c

Thảo Nguyễn
Xem chi tiết
Hồng Nhan
14 tháng 3 2022 lúc 17:49

\(\Delta=\left(2m\right)^2-4.1.\left[-\left(2m+3\right)\right]=4m^2+8m+12\)

\(=4.\left(m^2+2m+3\right)=4.\left(m+1\right)^2+8\ge8>0\)   ∀m

⇒ Phương trình đã cho luôn có 2 nghiệm phân biệt với mọi m (ĐPCM)