Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn A
Xem chi tiết
Không Có Tên
30 tháng 12 2017 lúc 19:35

Bài 1:

\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)

\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)

Bài 2:

\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)

Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9

Bài 4:

 \(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)  

\(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)

bùi ngân phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2021 lúc 14:38

1: \(=\left(x-1\right)^2\)

2: \(x\in\left\{0;20\right\}\)

Nguyễn Hoàng Minh
23 tháng 12 2021 lúc 14:41

Câu 13:

\(1,=\left(x-1\right)^2\\ 2,\Leftrightarrow x\left(x-20\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=20\end{matrix}\right.\\ 3,\text{Đề lỗi}\)

Câu 14:

\(1,ĐK:x\ne-2\\ 2,=\dfrac{\left(x+2\right)^2}{x+2}=x+2\\ 3,\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(ktm\right)\Leftrightarrow x\in\varnothing\)

Câu 16:

\(A=x^2-4x+4+20=\left(x-2\right)^2+20\ge20\)

Dấu \("="\Leftrightarrow x=2\)

Nhung Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 9:18

Bài 1: 

b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)

Bài 2: 

a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)

d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)

\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)

e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)

Zi Heo
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2022 lúc 18:02

a: \(=\dfrac{x\left(x^2+x-2\right)}{x+2}=\dfrac{x\left(x+2\right)\left(x-1\right)}{x+2}=x^2-x\)

b: \(=\dfrac{x^3-3x^2+2x+24}{x+2}=\dfrac{x^3+2x^2-5x^2-10x+12x+24}{x+2}=x^2-5x+12\)

Buddy
Xem chi tiết
@DanHee
23 tháng 7 2023 lúc 15:55

\(a,=\dfrac{5x}{4y^3}\times\left(\dfrac{-20y}{x^4}\right)=\dfrac{-100xy}{4x^4y^3}=\dfrac{-25}{x^3y^2}\\ b,=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x+4\right)}\times\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)

\(c,=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\times\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x+3\right)^2.\left(x^2+2x+4\right)}\)

HT.Phong (9A5)
23 tháng 7 2023 lúc 15:57

a) \(\dfrac{5x}{4y^3}:\left(-\dfrac{x^4}{20y}\right)=\dfrac{5x}{4y^3}\cdot\left(-\dfrac{20y}{x^4}\right)=\dfrac{5\cdot-5}{y^2\cdot x^3}=\dfrac{-25}{x^3y^2}\)

b) \(\dfrac{x^2-16}{x+4}:\dfrac{2x-8}{x}=\left(x-4\right)\cdot\dfrac{x}{2\left(x-4\right)}=\dfrac{x}{2}\)

c) \(\dfrac{2x+6}{x^3-8}:\dfrac{\left(x+3\right)^3}{2x-4}=\dfrac{2\left(x+3\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\cdot\dfrac{2\left(x-2\right)}{\left(x+3\right)^3}=\dfrac{4}{\left(x^2+2x+4\right)\left(x+3\right)^2}\)

KAnh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 15:34

Để thực hiện phép chia một đa thức cho một đa thức khác, ta làm như sau:

Bước 1:

-        Chia đơn thức bậc cao nhất của đa thức bị chia cho đơn thức bậc cao nhất của đa thức chia.

-        Nhân kết quả trên với đa thức chia và đặt tích dưới đa thức bị chia sao cho hai đơn thức có cùng số mũ của biến ở cùng cột.

-        Lấy đa thức bị chia trừ đi tích đặt dưới để được đa thức mới.

Bước 2: Tiếp tục quá trình trên cho đến khi nhận được đa thức không hoặc đa thức có bậc nhỏ hơn bậc của đa thức chia.

Anh Đức
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
31 tháng 10 2020 lúc 6:17

Bài 1.

x^3 + 3x^2 + 3 x^3 + 1 1 1 x^3 - 3x^2 + 2

3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp

Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2

Bài 2.

Ta có : x3 + 3x2 + 3x + a có bậc là 3

x + 2 có bậc là 1

=> Thương bậc 2

lại có hệ số cao nhất của đa thức bị chia là 1

Đặt đa thức thương là x2 + bx + c

khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2

<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )

<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c

<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)

Vậy a = 2

Khách vãng lai đã xóa
Phạm Đỗ Bảo Ngọc
Xem chi tiết
Quỳnh Anh
16 tháng 8 2021 lúc 20:39

Trả lời:

12 - x3 - x2 = - x3 - x2 + 12

Làm tính chia:

x-2 -x^2 -x^3+2x^2 - -3x^2 +12 -3x -3x^2+6x - -6x+12 -6 -6x+12 - 0 -x^3 - x^2 +12

Khách vãng lai đã xóa
Phan Nghĩa
Xem chi tiết
GV
26 tháng 10 2017 lúc 16:11

a) \(x^5+x^3+x^2+1=\left(x^5+x^2\right)+\left(x^3+1\right)\)

     \(=x^2\left(x^3+1\right)+\left(x^3+1\right)\)

       \(=\left(x^3+1\right)\left(x^2+1\right)\)

Vậy phép chia đa thức trên cho \(x^3+1\) bằng \(x^2+1\)

b) \(x^2-5x+6=x^2-2x-3x+6\)

      \(=\left(x^2-2x\right)-\left(3x-6\right)\)

      \(=x\left(x-2\right)-3\left(x-2\right)\)

      \(=\left(x-2\right)\left(x-3\right)\)

Vậy phép chia đa thức trên cho \(x-3\) được thương là \(x-2\)