Bài tập 6: Cho tam giác ABC có BC = 2BA. BD là đường phân giác. Chứng minh : CD = 2DA.
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
Cho tam giác ABC , BC = 2BA . BD là tia phân giác của tam giác ABC . Chứng minh DC = 2DA
Cho tg ABC có BC = 2BA. Tia phân giác BD. CMR DC = 2DA
Cho \(\Delta ABC\)có \(BC=2BA\). \(BD\)là đường phân giác của \(\Delta ABC\). Chứng minh \(DC=2DA\)
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
Bài 4: Cho tam giác ABC, D nằm trên đoạn BC thỏa mãn: BD/CD=AB/AC. Chứng minh rằng AD là đường phân giác của tam giác ABC.
*Qua C, kẻ đường thẳng song song với AB cắt AD tại E.
- Xét △ABD có: \(AB\)//\(CE\) (gt)
=>\(\dfrac{AB}{CE}=\dfrac{BD}{CD}\) (định lí Ta-let).
Mà \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\) (gt)
=>\(\dfrac{AB}{CE}=\dfrac{AB}{AC}\) hay \(CE=AC\).
=>△ACE cân tại C.
=>\(\widehat{EAC}=\widehat{AEC}\).
Mà\(\widehat{AEC}=\widehat{BAD}\) ( \(AB\)//\(CE\) và so le trong).
=>\(\widehat{EAC}=\widehat{BAD}\) hay AD là phân giác của \(\widehat{BAC}\).
Xét tg ABC có
\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\left(gt\right)\)
=>AD là đường phân giác
Bài 3: Cho tam giác ABC vuông tại A có BC = 20 cm, AC = 16 cm. Vẽ đường cao AH.
a) Chứng minh: HBA ABC; HBA HAC.
b) Chứng minh: AB2 = BH. BC; AH2 = HB.HC
c) Tính AB, AH, BH.
d) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
e*) Trên AH lấy điểm K sao cho AK = 3,6cm. Từ K kẻ đường thẳng song song với BC, cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)
c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)
Bài 23/ Cho tam giác ABC có BC = a, AC = b, AB = c (b > c), các đường phân giác BD,
CE.
a) Tính các độ dài CD, BE rồi suy ra CD > BE
b) Vẽ hình bình hành BEKD. Chứng minh CE > EK
c) Chứng minh CE > BD.
Cho tam giác ABC có BC = 2BA . BD là phân giác của tam giác ABC . Chứng minh DC = 2DA
Xét ΔBAC có BD là phân giác
nên DA/DC=BA/BC=1/2
=>DC=2DA
Cho tam giác ABC vuông tại A có AB < AC . Vẽ đường phân giác CD của tam giác ABC. Kẻ BK vuông góc với CD ( K thuộc đường thẳng CD) a) giả sử AC = 24 cm, BC = 30 cm. Tính BD / AD b) vẽ AH là đường cao của tam giác ABC. Chứng minh tam giác HBA và tam giác ABC đồng dạng. c) chứng minh DA.DB=DK.DC d) trên đoạn thẳng DC lấy điểm F sao cho BF = BA. Gọi E là giao điểm của hai đường thẳng HA và BK. Chứng minh BF vuông góc với FE
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC