Gọi đường tròn (O) đi qua ba điểm A, B, C. Đường phân giác của cắt cung nhỏ AC tại E. Xét hai tam giác ABE và DBC, chúng có: (gt), (hai góc nội tiếp cùng chắn cung AB).
Vậy ∆ ABE ~ ∆ DBC => =
=> AB.BC = BD.BE = (BD + DE).BD = BD2 + DE.BD
=> BD2 = AB.BC - DE.BD (1)
Dễ dàng có ∆ DBC ~ ∆ DAE => = => DE.BD = AD.DC (2).
Thay (2) vài (1) ta có điều phải chứng minh.
Từ A dựng đường thẳng //với BC cắt BD kéo dài tại E
\(\Rightarrow\widehat{E_1}=\widehat{B_2}\) (góc so le trong)
Mà \(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{E_1}\) => tg ABE cân tại A => BA=AE (1)
Áp dụng hệ quả định lý ta let đối với tam giác ta có
\(\frac{CD}{DA}=\frac{BC}{AE}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{CD}{DA}=\frac{BC}{BA}=\frac{2BA}{BA}=2\Rightarrow CD=2DA\)