c con xúc sắc xuất hiện mặt 1 chấm”. Tính xác suất của biến cố B
A. 11/36
B. 5/18
C. 1
D. 1/3
Gieo hai con xúc sắc được chế tạo cân đối. Gọi B là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt 1 chấm”. Tính xác suất của biến cố B
A.
B.
C. 1
D.
Vinh gieo 3 con xúc xắc cân đối và đồng chất. Xác suất của biến cố “Tích số chấm xuất hiện trên ba con xúc xắc bằng 28” là
A. 0.
B. \(\frac{1}{{36}}\).
C. \(\frac{1}{{18}}\).
D. \(\frac{1}{{12}}\).
Đáp án đúng là A
Ta có: \(28 = 4.7.1 = 2.2.7\).
Qua cách phân tích trên ta thấy để xuất hiện tích 3 con xúc xắc là 28 thì phải có 1 con có mặt 7. Mà con xúc xắc không có mặt 7. Do đó, biến cố trên không xảy ra.
Vậy xác suất của biến cố “Tích số chấm xuất hiện trên ba con xúc xắc bằng 28” là 0.
Gieo ngẫu nhiên 1 con xúc xắc cân đối đồng chất 2 lần. Tìm xác suất của biến cố: a) Lần thứ nhất xuất hiện mặt 3 chấm? b) Ít nhất 1 lần xuất hiện mặt 2 chấm? c) Tổng số chấm của 2 lần không lớn hơn 5?
Không gian mẫu: \(6.6=36\)
a.
Lần thứ nhất có 1 khả năng thỏa mãn (3 chấm)
Lần thứ 2 bất kì => có 6 khả năng
\(\Rightarrow1.6=6\) khả năng để lần thứ nhất xuất hiện mặt 3 chấm
Xác suất: \(P=\dfrac{6}{36}=\dfrac{1}{6}\)
b.
Xác suất để cả 2 lần đều ko xuất hiện mặt 2 chấm là: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)
Xác suất để ít nhất 1 lần xuất hiện mặt 2 chấm: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)
c.
Các trường hợp có số chấm thuận lợi: (1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(3;1);(3;2);(4;1) có 10 trường hợp
Xác suất: \(P=\dfrac{10}{36}=\dfrac{5}{18}\)
Gieo 2 con xúc xắc cân đối và đồng chất. Xác suất của biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5” là
A. \(\frac{5}{{36}}\).
B. \(\frac{1}{6}\).
C. \(\frac{7}{{36}}\).
D. \(\frac{2}{9}\).
tham khảo
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 5" là: 4
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 10" là: 3
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5'' là:\(3+4=7\)
Xác suất của biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5" là: \(\dfrac{7}{36}\)
\(\Rightarrow C\)
a. Có 3 mặt nguyên tố: 2,3,5 nên xác suất xuất hiện số nguyên tố ở mỗi lần gieo là \(\dfrac{3}{6}=\dfrac{1}{2}\)
Xác suất 2 lần đều xuất hiện số nguyên tố: \(\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{4}\)
b. Xác suất để lần 1 xuất hiện mặt 6 chấm: \(\dfrac{1}{6}\)
c. Xác suất ít nhất 1 lần xuất hiện mặt 6 chấm: \(\dfrac{2.6-1}{36}=\dfrac{11}{36}\)
d. Xác suất ko lần nào xuất hiện 6 chấm: \(1-\dfrac{11}{36}=\dfrac{25}{36}\)
Gieo một con xúc sắc 4 lần. Tìm xác suất của biến cố B: “ Mặt 3 chấm xuất hiện đúng một lần”
A. P ( A ) = 5 324
B. P ( A ) = 5 32
C. P ( A ) = 3 − 5 6 4
D. P ( A ) = 2 − 5 6 4
Gọi B i là biến cố “ mặt 3 chấm xuất hiện lần thứ i” với i =1;2; 3; 4
Khi đó: B i ¯ là biến cố “ Mặt 3 chấm không xuất hiện lần thứ i”
Ta có: A = B 1 ¯ . B 2 . B 3 . B 4 ∪ B 1 . B 2 ¯ . B 3 . B 4 ∪ B 1 . B 2 . B 3 ¯ . B 4 ∪ B 1 . B 2 . B 3 . B 4 ¯
Suy ra :
P A = P B 1 P B 2 P B 3 P B 4 + P B 1 P B 2 P B 3 P B 4 + P B 1 P B 2 P B 3 P B 4 + P B 1 P B 2 P B 3 P B 4
Mà : P ( B i ) = 1 6 ⇒ P ( B i ¯ ) = 1 − 1 6 = 5 6 .
Do đó: P ( A ) = 4. 1 6 3 . 5 6 = 5 324 .
Chọn đáp án A
gieo ngẫu nhiên một con xuất xắc một lần. xác suất của biến cố " Mặt xuất hiện của xúc xắc có số chấm là hợp số " bằng
A. 1 phần 2 B. 1 phần 3 C. 1 phần 4 D. 1 phần 6
Có 2 trường hợp thuận lợi là các mặt 4 ,6
Do đó xác suất là: \(\dfrac{2}{6}=\dfrac{1}{3}\)
Gieo đồng thời hai con xúc xắc. Tính xác suất của các biến cố sau:
a) Tổng số chấm xuất hiện trên hai con xúc sắc là 10.
b) Tổng số chấm xuất hiện trên hai con xúc sắc là số lẻ.
Gọi X là tập hợp các kết quả có thể xảy ra.
Ta có \(X=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;6\right)\right\}\). Ta thấy tập hợp trên có 36 phần tử, hoặc 36 kết quả có thể xảy ra.
a) Biến cố trên có thể xảy ra nếu xảy ra 1 trong các kết quả sau:
(4;6); (5;5); (6;4). Có 3 kết quả để biến cố trên xảy ra.
Vậy xác suất của biến cố trên là \(\dfrac{3}{36}=\dfrac{1}{12}\).
b) Biến cố trên có thể xảy ra nếu xảy ra 1 trong các kết quả sau:
(1;2); (2;1); (1;4); (2;3); (3;2); (4;1); (1;6); (2;5); (3;4); (4;3); (5;2); (6;1); (3;6); (4;5); (5;4); (6;3); (5;6); (6;5). Có 18 kết quả để biến cố trên xảy ra.
Vậy xác suất để biến cố trên xảy ra là \(\dfrac{18}{36}=\dfrac{1}{2}\).
Gieo một con xúc sắc 4 lần. Tìm xác suất của biến cố A:" Mặt 3 chấm xuất hiện đúng một lần"
Đây giống với xác suất đại học hơn thì phải, cấp 3 hình như người ta ko cho dạng này (công thức Bernoulli)
\(P=C_4^1.\left(\dfrac{1}{6}\right)^1.\left(\dfrac{5}{6}\right)^{4-1}\)