Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Vũ Tuấn Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 7:43

tan x=2

=>\(\dfrac{sinx}{cosx}=2\)

=>sin x và cosx cùng dấu và \(sinx=2\cdot cosx\)

\(1+tan^2x=\dfrac{1}{cos^2x}\)

=>\(\dfrac{1}{cos^2x}=1+4=5\)

=>\(cos^2x=\dfrac{1}{5}\)

=>\(\left[{}\begin{matrix}cosx=\dfrac{1}{\sqrt{5}}\\cosx=-\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

TH1: \(cosx=\dfrac{1}{\sqrt{5}}\)

=>\(sinx=\sqrt{1-cos^2x}=\dfrac{2}{\sqrt{5}}\)

TH2: cosx=-1/căn 5

=>\(sinx=-\sqrt{1-cos^2x}=-\dfrac{2}{\sqrt{5}}\)

\(Q=\dfrac{sin^3x}{2sinx+cos^3x}\)

\(=\dfrac{\left(2\cdot cosx\right)^3}{2\cdot2cosx+cos^3x}\)

\(=\dfrac{8\cdot cos^3x}{4cosx+cos^3x}=\dfrac{8cos^2x}{4+cos^2x}\)

\(=\dfrac{8\cdot\dfrac{1}{5}}{4+\dfrac{1}{5}}=\dfrac{8}{5}:\dfrac{21}{5}=\dfrac{8}{21}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:11

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

ASrCvn
Xem chi tiết
Lê Song Phương
24 tháng 10 2023 lúc 5:16

Ta có \(\tan x-\cot x=m\) \(\Leftrightarrow\tan^2x+\cot^2x=m+1\)

\(\Leftrightarrow\dfrac{1}{\cos^2x}-1+\dfrac{1}{\sin^2x}-1=m+1\)

\(\Leftrightarrow A=\sqrt{\dfrac{1}{\sin^2x}+\dfrac{1}{\cos^2x}-9}=\sqrt{m-6}\)

Miner Đức
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 14:54

1.

\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)

\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)

\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)

\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)

2.

Đề bài thiếu, cos?x

Và x thuộc khoảng nào?

3.

\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)

\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)

\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)

4.

\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)

\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)

bảo trân
Xem chi tiết
Nguyễn Tuấn Anh
24 tháng 7 2023 lúc 18:33

đáp án không giống lắm 

 

Nguyễn Lê Phước Thịnh
24 tháng 7 2023 lúc 21:14

2: \(\left(sinx+cosx\right)^2=1+2\cdot sinx\cdot cosx=1+2\cdot\dfrac{\sqrt{3}}{4}=1+\dfrac{\sqrt{3}}{2}=\dfrac{2+\sqrt{3}}{2}\)

=>\(sinx+cosx=\dfrac{\sqrt{3}+1}{2}\)

mà sin x*cosx=căn 3/4

nên sinx,cosx là các nghiệm của phương trình là:

\(a^2-\dfrac{\sqrt{3}+1}{2}\cdot a+\dfrac{\sqrt{3}}{4}=0\)

=>\(\left[{}\begin{matrix}a=\dfrac{\sqrt{3}}{2}\\a=\dfrac{1}{2}\end{matrix}\right.\)

Ta sẽ có hai trường hợp:

TH1: sin x=căn 3/2; cosx=1/2

tan x=sinx/cosx=căn 3

cot x=1/căn 3

TH2: sin x=1/2; cosx=căn 3/2

tan x=sin x/cosx=1/căn 3

cot x=1:1/căn 3=căn 3

Nguyễn Lê Phước Thịnh
18 tháng 10 2020 lúc 19:22

Vẽ ΔABC vuông tại A có \(x=\widehat{B}\)

Ta có: \(\tan x=\tan\widehat{B}=\frac{AC}{AB}\)

\(\tan x=2\)

nên \(\frac{AC}{AB}=2\)

hay \(AC=2\cdot AB\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=AB^2+\left(2\cdot AB\right)^2=5\cdot AB^2\)

hay \(BC=AB\cdot\sqrt{5}\)

Xét ΔABC vuông tại A có \(\sin x=\sin\widehat{B}=\frac{AC}{BC}=\frac{2\cdot AB}{\sqrt{5}\cdot AB}=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\)

\(\cos x=\cos\widehat{B}=\frac{AB}{BC}=\frac{AB}{\sqrt{5}\cdot AB}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

\(\cot x=\cot\widehat{B}=\frac{1}{\tan x}=\frac{1}{2}\)

Khách vãng lai đã xóa
ngoc pham nhu
Xem chi tiết
Nguyễn Xuân Sơn Hoàng
29 tháng 9 2016 lúc 10:03

↔ sinx.cox + cos2

 

Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:02

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:04

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:07

c.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow3-3sin^22x=4cos^22x\)

\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)

\(\Leftrightarrow3=3+cos^22x\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Phạm Nguyễn Văn
Xem chi tiết
Ly Linh Lung
Xem chi tiết
Thanh Tùng DZ
10 tháng 8 2019 lúc 10:45

\(\tan x=\frac{\sin x}{\cos x}=\frac{3}{5}\Rightarrow\sin x=\frac{3}{5}\cos x\)

\(\Rightarrow N=\frac{\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\sin x.\cos x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\)

\(=\frac{\frac{3}{5}.\cos^2x}{\left(\frac{3}{5}\cos x-\cos x\right)\left(\frac{3}{5}\cos x+\cos x\right)}=\frac{\frac{3}{5}\cos^2x}{\frac{-16}{25}.\cos^2x}=\frac{-15}{16}\)