Cho tam giác ABC nội tiếp trong đường tròn tâm O, bán kính R có B A C = 75 o A C B = 60 O Kẻ BH ⊥ AC Quay tam giác ABC quanh trục AC thì △ BHC tạo thành hình nón xoay có diện tích xung quanh bằng?
Cho tam giác ABC nội tiếp đường O bán kính R. H là trực tâm của tam giác ABC. Gọi AD la đường kính của đường tròn O
A. CMR : BH = DC
B. CMR : H,G,O thẳng hàng.trong đó G là trong tâm tam giác ABC
C. AH căt (O;R) tại H'. Tinh bán kính đường tròn ngoại tiếp tam giác BH'C
Bai1: Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. Các đỉnh B, C cố định còn A chạy trên đường tròn đó. Tìm tập hợp các trọng tâm G của tam giác ABC khi A di độngCho tam giác ABC nội tiếp đường tròn tâm O bán kính R. các bạn giúp mih` giải và vẽ hình bài này nhé help me đang cần gấp
Cho tam giác ABC, góc A=75° nội tiếp đường tròn tâm O bán kính R=1. tính diện tích tam giác OBC.
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot\widehat{BOC}\)
=>\(\widehat{BOC}=75^0:\dfrac{1}{2}=150^0\)
Diện tích tam giác OBC là:
\(S_{OBC}=\dfrac{1}{2}\cdot OB\cdot OC\cdot sinBOC\)
\(=\dfrac{1}{2}\cdot1\cdot1\cdot sin150=\dfrac{1}{4}\)
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số \(\dfrac{R}{r}\) bằng
Giải chi tiết cho mk vs
Tham khảo:
Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)
Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)
Xét tỉ số:
\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)
\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}\left(b.c\right)^2}=\dfrac{a.b^2\dfrac{\left(a+2b\right)}{2}}{b^4}=\dfrac{a.b^2\left(a+2b\right)}{2b^4}=\dfrac{a\left(a+2b\right)}{2b^2}\)
\(=\dfrac{b\sqrt{2}\left(b\sqrt{2}+2b\right)}{2b^2}=\dfrac{b^2\sqrt{2}\left(\sqrt{2}+2\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)
Tam giác ABC vuông tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Kho đó tỉ số R/r bằng
Kiểm tra lại đề nha bạn. Chắc chắn là thiếu giả thiết rồi đó.
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
cho tam giác abc nội tiếp đường tròn (O;R) bán kính R trong đó B,C cố đinhj chứng minh rằng trọng tâm g của tam giác luôn thuộc một ddường tròn cố định
Lời giải:
Gọi $M$ là trung điểm của $BC$. Do $BC$ cố định nên $M$ cố định.
Qua $G$ kẻ $GI\parallel AO$ với $I\in OM$
Theo Talet thì $\frac{GI}{AO}=\frac{MI}{MO}=\frac{GM}{MA}=\frac{1}{3}$
Mà $M,O$ cố định nên $I$ cố định.
$\frac{GI}{AO}=\frac{1}{3}\Rightarrow GI=\frac{AO}{3}=\frac{R}{3}$
Vậy trọng tâm $G$ luôn thuộc đường tròn $(I, \frac{R}{3})$ cố định.
cho tam giác ABC có AB=AC=40, BC=48. gọi O và I thứ tự là tâm đường tròn ngoại tiếp tam và nội tiếp tam giác. tính
a) Bán kính đường tròn nội tiếp
b) Bán kính đường tròn ngoại tiếp
c) Khoảng cách OI
Cho đường tròn tâm O bán kính R có đường kính AB, dây cung BC=R.
a) Tính AC theo R và số đo góc B của tam giác ABC.
b) Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn tâm O ở D.
Chứng minh DC là đường tiếp tuyến của đường tròn tâm O.
c) Đường thẳng OD cắt đường tròn tâm O tại I. Chứng minh rằng I là tâm đường tròn nội tiếp tam giác ADC.