Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Khánh Ly
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 18:36

1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)

\(\Leftrightarrow48,68-AC^2=13,57\)

hay \(AC=5,93\left(cm\right)\)

Bà HOÀng Thả ThÍnh
Xem chi tiết
Dương Mạnh Quyết
21 tháng 12 2021 lúc 10:21

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

Khách vãng lai đã xóa
Lưu Nguyễn Hà An
15 tháng 2 2022 lúc 9:04

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Hải Nam Xiumin
Xem chi tiết
Huỳnh Thu An
24 tháng 8 2016 lúc 18:37

1.Toán lớp 9

Kẻ đường cao CH

Xét tam giác vuông HCB,ta có:

góc B +    góc C=90

  60  +    góc C=90     

=> góc C= 30=> góc C=10

Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:

    HB= BC x cot góc B = 9 x cot 60= 33 (cm)

=>HC=BC- HB=9- (3√3)= 3√6 (cm) (Đinh lí Py-ta-go)

    AH= HC x tan góc C= 3√6 x tan 10=1,3 (cm)

Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)

AC = AH : sin góc C2 = 7,49 (cm)

Vậy  AB = 6,49 cm ; AC = 7,49 cm

2.Toán lớp 9

Kẻ đường cao AH.

Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:

BH = AB x cos góc B = 3,2 x cos 70= 1,09 (cm)

AH= BH x tan góc B =1,09 x tan 70= 2,99 (cm)

Ta có : BC  -  BH  = HC

  => HC =  6,2  - 2,99 = 3,21 (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:

      AC2 AH+HC = (2,99)+(3,21)2  =>AC= 4,39 (cm)

Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha thanghoa

 

 

 

 

 

 

 

 

wary reus
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 9 2016 lúc 16:19

Áp dụng định lí Cosin : 

\(BC^2=AB^2+AC^2-2AB.AC.cosA\)

Vu Ngoc Huyen
25 tháng 9 2016 lúc 22:41

a, \(\sqrt{7}\) cm

b, căn 21 cm

c, \(\sqrt{7-2\sqrt{3}}\) cm

Trần Minh Hoàng
10 tháng 2 2017 lúc 11:33

Áp dụng định lý Cosin:

BC2 = AB2 + AC2 - 2AB.AC.cosA

Hạ Ann
Xem chi tiết
Nguyễn Đức Lâm
7 tháng 8 2021 lúc 8:31

AB = BH . BC = 9.BH 

mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB

=> AB= 4,5

=> BH = 2,25 => HC = 6,75

Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)

Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)

wary reus
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 14:35

a: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{5-BC^2}{2\cdot1\cdot2}=\dfrac{5-BC^2}{4}\)

\(\Leftrightarrow\dfrac{5-BC^2}{4}=\dfrac{-1}{2}\)

\(\Leftrightarrow5-BC^2=-2\)

\(\Leftrightarrow BC=\sqrt{7}\left(cm\right)\)

b: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{125-BC^2}{100}\)

\(\Leftrightarrow125-BC^2=50\)

hay \(BC=5\sqrt{3}\left(cm\right)\)

c: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{7-BC^2}{8\sqrt{3}}\)

\(\Leftrightarrow7-BC^2=4\sqrt{3}\)

hay \(BC=2-\sqrt{3}\left(cm\right)\)

Nguyễn Văn Hiển
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 23:04

Đề sai hết ở cả hai câu rồi bạn

Huỳnh Thế Vũ
Xem chi tiết
Nobi Nobita
24 tháng 1 2021 lúc 16:55

                              A B C H

Kẻ \(AH\perp BC\)

Xét \(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\)\(\Rightarrow\widehat{BAH}=90^o-60^o=30^o\)

Áp dụng nhận xét: trong 1 tam giác vuông, cạnh đối diện với góc \(30^o\)bằng \(\frac{1}{2}\)cạnh huyền

Ta có: \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=30^o\)

\(\Rightarrow BH=\frac{1}{2}AB=\frac{1}{2}.5=2,5\)( cm )

\(\Rightarrow CH=BC-BH=8-2,5=5,5\)( cm )

Xét \(\Delta ABH\)vuông tại H \(\Rightarrow AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2=5^2-2,5^2=18,75\)

Xét \(\Delta ACH\)vuông tại H \(\Rightarrow AH^2+HC^2=AC^2\)

\(\Rightarrow AC^2=18,75+5,5^2=18,75+30,25=49\)

\(\Rightarrow AC=7cm\)

Vậy \(AC=7cm\)

Khách vãng lai đã xóa